"THE IMPORTANCE OF FLEXIBILITY IN MANUFACTURING"

by

Mihkel M. TOMBAK*

N° 88 / 33

* Mihkel M. TOMBAK, Assistant Professor of Production and Operations Management, INSEAD, Fontainebleau, France

Director of Publication:

Charles WYPLOSZ, Associate Dean for Research and Development

Printed at INSEAD, Fontainebleau, France
THE IMPORTANCE OF

FLEXIBILITY IN MANUFACTURING

MIHKEI M. TOMBAK

European Institute of Business Administration (INSEAD)
Fontainebleau, France

JUNE 1988
ACKNOWLEDGEMENTS

I would like to acknowledge the contribution of Profs. Paul R. Kleindorfer and Edward Bowman both of the Wharton School who suggested that I work on the problem herein and provided useful comments and criticisms. My gratitude must also be extended to the people at the Strategic Planning Institute for the use of the Profit Impact of Marketing Strategy (PIMS) database.
THE IMPORTANCE OF FLEXIBILITY IN MANUFACTURING

ABSTRACT

The goals of our study are to investigate the correlation between manufacturing flexibility and firm performance, and to determine whether manufacturing flexibility holds greater importance in the growth phase of the product life cycle as opposed to the mature phase. The Profit Impact of Marketing Strategy (PIMS) database provides our working data on 1,455 business units. Measures of manufacturing flexibility are extracted from the PIMS database, and a regression analysis conducted with firm performance measures. Flexibility is found to have a significant effect on firm performance and, in general flexibility is found to be more important in the growth phase than in the mature phase of the product life cycle.

(MANUFACTURING FLEXIBILITY; MANUFACTURING STRATEGY; PIMS; PRODUCT LIFE CYCLE)
1. Introduction

Flexibility is considered one of the dimensions of manufacturing strategy along with cost, quality, and dependability (see Wheelwright 1984). The profit impact of production costs is direct and clear. Intuitively, flexibility, quality, and dependability should also correlate with profits. The effects of these dimensions, however, is more indirect, depending on extraneous factors to the firm such as buyer behavior, and the costs involved in creating the benefit.

In this paper we will be testing the hypothesis that the economic performance of a firm is correlated with manufacturing flexibility. The hypothesis was generated by Newell and Swamidass (1987) whose study of thirty-five Pacific northwestern machine tool manufacturing firms found a high degree of correlation between firm performance and flexibility. Here, through an analysis of the Profit Impact of Marketing Strategy (PIMS) database, we will show that this relationship holds more generally, for manufacturing firms in a variety of industry groups throughout the U.S.A. Also, it will be shown that manufacturing flexibility is more important in the growth
stage of the product life cycle than it is in the mature phase.

Developments in manufacturing technology and the coining of the term "flexible manufacturing systems" have led to several attempts to define "flexibility" with respect to manufacturing. Taxonomies have been provided by Mandelbaum (1978), Buzacott (1982), Zelenovic (1982), Browne et. al. (1984), and Jaikumar (1984). It should be noted that very little has been done in terms of developing measures for the various types of flexibility (with the exception of the work by Chatterjee, Cohen, Maxwell, and Miller, 1984). As Adler (1985) has stated, no one definition has gained widespread acceptance as each appears to be rather domain specific.

The PIMS database contains data from 7,265 strategic business units on 500 variables. Anderson and Paine (1978) have conducted a critical analysis of the database and found it generally "to be the best current attempt to gather and analyze data on strategic actions of businesses". Of these 7,265 business units 5,878 manufactured at least 70% of their products and these were used for our study of manufacturing firms.
In this section we will review the theoretical basis for our hypotheses that (a) manufacturing flexibility is an important decision variable having a significant impact on firm performance, and (b) manufacturing flexibility is more important in the growth phase of the product life cycle than in the mature phase.

Although more an intuitive understanding than "theory" as such, the idea that flexibility in manufacturing should be significant has been discussed by Wheelwright (1984), Jaikumar (1986), and essentially underlies the whole body of literature on FMS. The logical assertion that "competitive success increasingly depends on management's ability to anticipate and respond quickly to changing market needs" (Jaikumar, 1986, Pg. 76) emphasizes the obvious need for flexibility in a competitive market.

Product life cycle theory suggests that different strategies are appropriate during different stages of the cycle. Wasson (1983) suggests that in the growth stage product design differentiation is a key success factor.
"The growth stage is inevitably characterized by a growth in market segmentation ... Sellers must find a niche for themselves ... and design a flexible mix of models to serve the types of segments occupying that niche ... The seller needs to provide quick feedback and a sensitivity to these needs in order to adapt offering designs to the demand pattern ... During this stage, a seller must keep in the forefront of changing design possibilities, in order to preempt any possible opportunities for new competitors"

Wasson (1983), Pg. 339

In the mature phase, however, Catry and Chevalier (1974) recommend increasing the manufacturing process stability, and Patton (1959) advises lower product differentiation. Dean (1950) states that this phase is characterized by greater product standardization and stabilization of production methods. The above literature suggests that manufacturing flexibility is more important in the growth phase than in the mature phase and that manufacturing flexibility is occasionally necessary to carry out the appropriate strategy.

Utterback and Abernathy (1975) describe an evolutionary model of process and product innovation. In this model products and processes undergo a transformation from an early "fluid" period of development to a state that is specific and rigid. During this early stage the process is largely unstandardized and labor intensive.
The process is characterized by loose and unsettled relationships between process elements. As product performance criteria become better known and as the production technology becomes better defined, there is a move towards more efficient, capital intensive, rationalized flow production systems.

It is interesting to note that in 1975 Utterback and Abernathy were aware of some of the impacts of FMS when they stated:

"It may also be that computer aided manufacturing will ultimately reduce some of the interdependence between product and process change".

An empirical study of thirty five machine tool manufacturing firms in the Pacific northwest of the U.S. by Newell and Swamidass (1987) found that the greater the flexibility the better the economic performance of the firm. In fact, they found that manufacturing flexibility had a greater correlation with economic performance than any of the other variables tested (i.e. environmental uncertainty, and the role of manufacturing managers in strategic decision making). In our study we tested the hypothesis whether the correlation between flexibility and performance holds more generally (i.e. across the U.S., and across industry groups) by using the PIMS database.
3. Description of Performance and Flexibility Measures

From the PIMS data five measures of firm performance were amalgamated to give an overall measure. These five items were averages over the five year period 1980-1984. They were:

(i) return on sales corrected for inflation (ROS) (%)
(ii) return on investment corrected for inflation (ROI) (%)
(iii) real sales growth (%)
(iv) cashflow/revenue (%)
(v) market share growth (%)

The last two measures, cashflow/revenue and market share growth, were used by Thietart and Vivas (1984) in their study using the PIMS data. As they pointed out cashflow/revenue is more of a short-run financial objective while market share growth may entail short-term sacrifices for long-term gain. Other studies using PIMS data have used market share (Buzzell and Wiersema 1981), and ROS (Galbraith and Stiles 1983) as their measures of performance.

As measures of firm performance Newell and Swamidass use the following items: average annual rate of growth in return on total assets, average annual rate of growth of sales, and average annual rate of growth in return on sales. They justify the use of growth as the preferred
measure of performance since in the period of their data collection (1977-1981) the machine tool industry was faced with a severe recession as well as increasing competition from abroad. As a result, growth was considered a rigorous test of firm performance.

In our case growth alone would not have been appropriate since the data was collected for the years 1980-1984 and since we have split the firms into those in the growth phase and those in the mature phase. We have used a linear combination of all the above performance measures (i) to (v) for an overall measure of firm performance (the dependent variable PERFORMANCE in our regression analysis). It does not have the drawbacks of using ROS or ROI alone that Thietart and Vivas reported (i.e. they could not be reasonably approximated by a normal distribution). As one would expect (as a result of the Central Limit Theorem) the multi-item measure provided a distribution that better approximated a normal distribution.

The Cronbach Alpha (Cronbach 1951) was computed for this multi-item measure and found to be between 0.507 and 0.757. This Cronbach Alpha is a measure of reliability in the multi-item construct. The minimum alpha value recommended by Nunnally [1978, Pg. 245] to ensure reliability in a multi-item measure for psychometric
research was in the area of 0.7. Any doubt that this particular combination may have affected our results was eliminated by taking different combinations as well as individual performance measures and repeating the analysis. Such repetitions yielded results that differed little from those reported here.

For the study here we found several variables in the PIMS database which describe some aspect of manufacturing flexibility. The items in the PIMS data used were:

1. frequency of product changes
2. technological change (0= no change, 1= change)
3. customization (0=standard product, 1=customized)
4. development time for new products
5. % small batches in production
6. total R&D/revenue

Some of the above items were then rescaled such that lower numbers indicated less flexibility and higher numbers more flexibility. Newell and Swamidass (1987) incorporated in

\[\text{Cronbach Alpha} = \frac{k}{k - 1} \left(1 - \frac{\sum \sigma_i^2}{\sigma_m^2}\right) \]

where,

- \(k \) = the number of items included in the measure
- \(\sigma_i^2 \) = the variance of item \(i \)
- \(\sigma_m^2 \) = variance of the measure

Peter (1979) has pointed out that Nunnally's guidelines were primarily concerned with the development of finely tuned measures of individual traits to be used for decisions about individuals. Peter suggests that for marketing research, since it is not of the same nature, can accept lower levels of reliability. This is also true of the research here.
flexibility. Newell and Swamidass (1987) incorporated in their measure of manufacturing flexibility five items (which were scored on ten point scales from most flexible in the industry to least flexible in the industry): new products introduction, introducing new production processes, product varieties, product features, and R&D effort. Unlike Newell and Swamidass' study we could not combine all of the above aspects of flexibility into one measure as the Cronbach Alpha was too low. Consequently, each aspect was treated as a separate independent variable.
4. Testing Procedure

A sample of 5,879 business units was drawn from the PIMS database which manufactured 70% of their products. This group was then further subdivided into six different types of businesses, and into two stages of the product life cycle. Those observations which included extreme values in any of the performance variables or in R&D/revenue were eliminated. The correlation matrix was computed, and multivariate linear regressions were performed. Initially, those independent variables which had coefficients below the 90% confidence level were excluded in subsequent computations of the regression analysis. Afterwards, variables which exhibited colinearity with other independent variables were eliminated.

The firms were split by 6 types of businesses: Consumer Durables, Consumer Non-durables, Capital Goods, Raw Materials and Semi-finished Goods, Components for Finished Goods, and Supplies manufacturers. There were eight possible types of businesses within the database. However, the two remaining businesses, Services and Retailers/Wholesale Distributors were, quite naturally, lacking in manufacturers. This division was performed on the basis of how the businesses classified themselves in
response to a question on the survey.

The business units were then further divided into two groups according to where they were in the product life cycle. These two groups consisted of those who were in the growth phase and those who were in the mature phase. This distinction was made, as Thietart and Vivas had made it, by both qualitative and quantitative criteria. The quantitative criterion was the reported market growth. The qualitative criterion was where the respondents perceived themselves to be on the product life cycle. If both market growth was greater than 4.5% p.a., and the respondent reported that the business was in the growth stage then the business was classified in the growth stage. Similarly, the respondents had to report that they were in the mature phase, and the market growth rate had to be between -1% and 4.5% for the business to be considered in the mature stage. All other businesses were excluded. The introductory stage and decline stage included too few observations to be analyzed.

Thietart and Vivas noted that the PIMS database, like any other, was likely to contain miscoded variables. They followed the PIMS recommendation of excluding 5% of the observations with the largest absolute residuals. We went somewhat further excluding a larger proportion of the observations, the reason being that large increases in market share or ROI and ROSs in excess of an average of
30% p.a. over the five year period indicate some extraordinary change not likely to be attributable to normal operations of a firm. Also, an examination of the frequency distribution over the ROI and ROS revealed (in some industry groups) two separate mound shapes indicating the possibility of two distinct populations. The cutoff points used were: for R&D/revenue (%) 0, 10; for ROI (%) -20, 30; for ROS (%) -20, 30; for real sales growth (%) -20, 40; for cashflow/revenue (%) -20, 20; and for market share growth (%) -15, 20 (lower bound, upper bound, respectively). Thus the sample size was pruned down to 1,455 business units.
5. Summary of Test Results

The following tables summarize the results of the regression analyses. Only coefficients which are significant at the 90% confidence level or greater are reported. For further detail (correlation matrices, etc.) refer to the Appendix.
TABLE 1. EFFECTS OF FLEXIBILITY ON PERFORMANCE

<table>
<thead>
<tr>
<th>Business Variable</th>
<th>CONSUMER DURABLES</th>
<th>CONSUMER NON-DURABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROWTH</td>
<td>MATURE</td>
</tr>
<tr>
<td>Customization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq. Prod. Ch.</td>
<td>-20.92</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Technol. Change</td>
<td>32.06</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Develop. Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Small Batches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tot. R&D/Rev.</td>
<td>-7.11</td>
<td>(0.000)</td>
</tr>
<tr>
<td>R^2 (%)</td>
<td>55.22</td>
<td>12.64</td>
</tr>
<tr>
<td>F</td>
<td>14.2</td>
<td>21.0</td>
</tr>
<tr>
<td>(D.F.)</td>
<td>(2,23)</td>
<td>(1,145)</td>
</tr>
<tr>
<td>Prob(error)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Sample Size</td>
<td>26</td>
<td>147</td>
</tr>
<tr>
<td>Cronbach Alpha</td>
<td>0.507</td>
<td>0.716</td>
</tr>
</tbody>
</table>

* there were no significant effects for this group
TABLE 1 (CONTINUED)

<table>
<thead>
<tr>
<th>Business MATL</th>
<th>CAPITAL GOODS</th>
<th>RAW AND SEMI-FINISHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>GROWTH</td>
<td>MATURE</td>
</tr>
<tr>
<td>Customization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq. Prod. Ch.</td>
<td>11.63</td>
<td>-14.96</td>
</tr>
<tr>
<td>(0.031)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Technol. Change</td>
<td>-14.96</td>
<td>6.22</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Develop. Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Small Batches</td>
<td>0.196</td>
<td></td>
</tr>
<tr>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tot. R&D/Rev.</td>
<td></td>
<td>4.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.015)</td>
</tr>
<tr>
<td>R^2 (%)</td>
<td>22.62</td>
<td>4.76</td>
</tr>
<tr>
<td>F</td>
<td>6.43</td>
<td>7.25</td>
</tr>
<tr>
<td>(D.F.)</td>
<td>(3,66)</td>
<td>(1,145)</td>
</tr>
<tr>
<td>Prob(error)</td>
<td>0.001</td>
<td>0.008</td>
</tr>
<tr>
<td>Sample Size</td>
<td>70</td>
<td>147</td>
</tr>
<tr>
<td>Cronbach Alpha</td>
<td>0.647</td>
<td>0.712</td>
</tr>
</tbody>
</table>
TABLE 1 (CONTINUED)

<table>
<thead>
<tr>
<th>Business Variable</th>
<th>COMPONENT MFGRS</th>
<th>SUPPLIES MFGRS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROWTH</td>
<td>MATURE</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Customization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq. Prod. Ch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technol. Change</td>
<td></td>
<td>19.34</td>
<td>(0.015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop. Time</td>
<td>-4.45</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Small Batches</td>
<td>-0.20</td>
<td>-0.15</td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Tot. R&D/Rev.</td>
<td>2.47</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	3.98	7.16	9.47	4.46
R² (%)				
	4.02	8.64	5.02	8.21
F				
(D.F.)	(1,97)	(2,224)	(1,48)	(1,176)
Prob(error)	0.048	0.000	0.030	0.005
Sample Size	99	227	50	178
Cronbach Alpha	0.661	0.702	0.672	0.757

NB: (i) The figures in the brackets beneath the regression coefficients are the probabilities that the effect is zero.

(ii) The Prob(error) is the P-level for the entire regression taken together based on the computed F-statistic with degrees of freedom (D.F.) for the numerator and denominator, respectively.
6. Conclusions

There are two major findings from this study. The first is that manufacturing flexibility is an important decision variable for firms. The obtaining of, or the decision of not acquiring, manufacturing flexibility has a statistically significant effect on firm performance. The second is that, generally, (with the exception of the component manufacturers) we have found that manufacturing flexibility is more significant among growth firms than mature firms where significance is measured in terms of R^2 (the proportion of variance in performance explained by manufacturing flexibility).

The initial reaction may be that the R^2's are rather small. However, it must be kept in mind that we are examining very broadly defined groups in this cross-sectional data. Also, it should be remembered that manufacturing flexibility is just one aspect of manufacturing strategy and just one of a myriad of decision variables for a firm which impact on the performance of the firm. If we examine other published reports using PIMS data we see that the R^2's we obtain are within the same general area as those obtained by other researchers. From Table 1 we see that the R^2 ranges anywhere from 3.98% to 55.22%. Buzzell and Wiersema
(1981) obtained R^2s of 27.9%, 29.9%, and 39.3% in their models of variables affecting changes in market share. Galbraith and Stiles' (1983) study of relative firm power and its association with firm profitability achieve R^2s ranging from 6.0% to 23.5%. Thietart and Vivas (1984) attain R^2s ranging from 42% to 92%. They, however, allow a much higher correlation between independent variables (0.42) than we do in our models (generally below 0.2, depending on the number of observations).

Newell and Swamidass' study (1987) of machine tool manufacturers can be thought of as a special case of the capital goods producers in the mature phase. Their study had a 11% R^2 as compared to our 4.76% R^2 for the more broadly defined group.

In many of the regression models one can see significant negative coefficients. This implies that it is possible to try to have too much manufacturing flexibility for the given situation. This is contrary to a finding of Newell and Swamidass which was that increased flexibility meant improved firm performance. This is likely due to the fact that associated with each aspect of flexibility there is a cost (i.e. higher set up costs for a higher percentage of small batches, higher development

2 Galbraith and Stiles (1983) defined relative firm power between producing firms, their suppliers, and their customers by concentration levels in their factor and output markets as well as barriers to entry.
costs for a greater number of new product introductions, etc.). These costs may be greater than the resulting return, ergo the negative effect. Whether the effect has a positive coefficient or a negative coefficient depends on whether the majority of the firms in the group are in the area of positive or negative marginal returns, respectively, for the investment in the particular aspect of manufacturing flexibility.

It must also be kept in mind that these results are a function of the given technology (at the time when this data was gathered very few American firms had FMS). The new flexible technologies can reduce the costs of frequent product changes and small batches, and reduce product development time. The advent of these technologies provides us with an incentive for further work in clarifying the characterization of manufacturing flexibility.
REFERENCES

APPENDIX

THE IMPORTANCE OF MANUFACTURING FLEXIBILITY TO FIRM PERFORMANCE:
AN ANALYSIS OF PIMS DATA
CONSUMER DURABLE MANUFACTURERS IN THE GROWTH PHASE

VBLs NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE
DATA ARE IN WFL 2: 26 OBS ON 7 VBLs.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3003</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.2081</td>
<td>0.0919</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2654</td>
<td>0.2219</td>
<td>-0.0135</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.4850</td>
<td>0.0148</td>
<td>-0.2440</td>
<td>0.5969</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.1945</td>
<td>-0.1003</td>
<td>-0.1003</td>
<td>-0.6707</td>
<td>-0.6278</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.3621</td>
<td>-0.5364</td>
<td>-0.4629</td>
<td>-0.2693</td>
<td>-0.1340</td>
<td>0.1087</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>59.13</td>
<td>8.68</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>-20.92</td>
<td>5.02</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>32.06</td>
<td>8.70</td>
<td>.001</td>
</tr>
</tbody>
</table>

EST.RES.SD | 15.93
AV.FCST SD | 17.61
SAM.RES.SD | 14.99
SAM.R SQR | .5522
F | 14.2 (2,23 DF): P | .000
CONSUMER DURABLE MANUFACTURERS IN THE MATURE PHASE

VBLS NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 %SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 147 OBSS ON 7 VBLS.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.2275</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.0675</td>
<td>0.0487</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.4860</td>
<td>0.2605</td>
<td>0.1086</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2861</td>
<td>0.0497</td>
<td>0.0628</td>
<td>0.0083</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.4068</td>
<td>0.1282</td>
<td>-0.0570</td>
<td>0.2274</td>
<td>0.0525</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1290</td>
<td>-0.0666</td>
<td>0.1011</td>
<td>-0.0423</td>
<td>-0.0009</td>
<td>-0.3555</td>
<td>1.000</td>
</tr>
</tbody>
</table>

RESULTS OF REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th>NAT:</th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CONSTANT</td>
<td>21.21</td>
<td>2.78</td>
<td>.000</td>
</tr>
<tr>
<td>6 TOTAL R&D/REV A</td>
<td>-7.106</td>
<td>1.552</td>
<td>.000</td>
</tr>
</tbody>
</table>

EST. RES. SD 24.27
AV. FCST SD 24.61
SAM. RES. SD 24.11
SAM. R SQR .1264
F = 21.0 (1,145 DF): P = .000
CONSUMER NON-DURABLE MANUFACTURERS IN THE MATURE PHASE

VBLs NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANG
4 RE DEV TIME
5 SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 269 OBS ON 7 VBLs.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.0669</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.0385</td>
<td>-0.1125</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0870</td>
<td>0.3334</td>
<td>0.1336</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.5401</td>
<td>0.0054</td>
<td>-0.0750</td>
<td>0.1929</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0190</td>
<td>-0.1503</td>
<td>0.1368</td>
<td>0.0648</td>
<td>-0.0370</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.0084</td>
<td>0.0745</td>
<td>0.0323</td>
<td>0.0998</td>
<td>-0.0830</td>
<td>0.2503</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF REGRESSION ANALYSIS

DEP. VBL: PERFORMANCE
NAT: EST SE P
0 CONSTANT 9.062 1.763 .000
6 TOTAL R&D/REV A 6.194 1.466 .000

EST RES. SD 21.32
AV. FCST SD 21.48
SAM. RES. SD 21.24
SAM. R SQR .0626
F = 17.8 (1,267 DF): P = .000
CAPITAL GOODS MANUFACTURERS IN THE MATURE PHASE

VBLS NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 %SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 147 OBS ON 7 VBLS.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.1346</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.1887</td>
<td>0.2333</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.0676</td>
<td>0.0173</td>
<td>0.1267</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.4501</td>
<td>-0.1025</td>
<td>-0.2069</td>
<td>0.1865</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.1087</td>
<td>0.3117</td>
<td>0.0274</td>
<td>0.1050</td>
<td>0.1447</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.0565</td>
<td>0.0619</td>
<td>0.0675</td>
<td>0.2183</td>
<td>-0.0104</td>
<td>-0.0530</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF THE REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CONSTANT</td>
<td>3.317</td>
<td>7.229</td>
<td>.324</td>
</tr>
<tr>
<td>4 RE DEV TIME</td>
<td>6.223</td>
<td>2.311</td>
<td>.004</td>
</tr>
</tbody>
</table>

EST RES SD: 27.33
AV. FCST SD: 27.71
SAM. RES SD: 27.14
SAM. R SQR: 0.0476
F = 7.25 (1,145 DF): P = .008
RAW MATL'S OR SEMI-FINISHED GOODS MANUFACTURERS IN THE GROWTH PHASE

VBLS NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 52 OBSS ON 7 VBLS.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.0722</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.2270</td>
<td>-0.0077</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2532</td>
<td>0.1923</td>
<td>0.7285</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.3488</td>
<td>0.3346</td>
<td>-0.0173</td>
<td>0.2403</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.0919</td>
<td>0.3857</td>
<td>-0.1990</td>
<td>0.0188</td>
<td>0.1282</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.0394</td>
<td>-0.1312</td>
<td>-0.0156</td>
<td>-0.0917</td>
<td>0.0551</td>
<td>0.3022</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF THE REGRESSION ANALYSIS

DEP. VBL: PERFORMANCE

<table>
<thead>
<tr>
<th>NAT:</th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CONSTANT</td>
<td>15.17</td>
<td>5.66</td>
<td>.005</td>
</tr>
<tr>
<td>6 TOTAL R&D/REV A</td>
<td>4.548</td>
<td>2.029</td>
<td>.015</td>
</tr>
</tbody>
</table>

EST. RES. SD 29.26
AV. FCST SD 30.44
SAM. RES. SD 28.70
SAM. R SQR .0913
F - 5.03 (1, 50 DF): P - .029
RAW MATERIALS AND SEMI-FINISHED GOODS MANUFACTURERS
IN MATURE PHASE

VBLS NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 %SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 117 OBS ON 7 VBLS.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>.2740</td>
<td>.0559</td>
<td>.3072</td>
<td>.4176</td>
<td>.1732</td>
<td>.0486</td>
</tr>
<tr>
<td>2</td>
<td>.2740</td>
<td>1</td>
<td>.1631</td>
<td>.4434</td>
<td>.2043</td>
<td>.2041</td>
<td>.1336</td>
</tr>
<tr>
<td>3</td>
<td>.0559</td>
<td>.1631</td>
<td>1</td>
<td>.2967</td>
<td>-.3370</td>
<td>.2174</td>
<td>-.0089</td>
</tr>
<tr>
<td>4</td>
<td>.3072</td>
<td>.4434</td>
<td>.2967</td>
<td>1</td>
<td>.0746</td>
<td>.2508</td>
<td>.1575</td>
</tr>
<tr>
<td>5</td>
<td>.4176</td>
<td>.2043</td>
<td>-.3370</td>
<td>.0746</td>
<td>1</td>
<td>-.0180</td>
<td>1.0000</td>
</tr>
<tr>
<td>6</td>
<td>.1732</td>
<td>.2041</td>
<td>.2174</td>
<td>.2508</td>
<td>-.0180</td>
<td>1</td>
<td>1.0000</td>
</tr>
<tr>
<td>7</td>
<td>.0486</td>
<td>.1336</td>
<td>-.0089</td>
<td>.1575</td>
<td>.0542</td>
<td>-.2142</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF THE REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th>NAT:</th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CONSTANT</td>
<td>14.62</td>
<td>2.57</td>
<td>.000</td>
</tr>
<tr>
<td>6 TOTAL R&D/REV A</td>
<td>-2.627</td>
<td>1.117</td>
<td>.010</td>
</tr>
</tbody>
</table>

EST.RES.SD 23.51
AV.FCST SD 23.92
SAM.RES.SD 23.31
SAM.R SQR .0459
F = 5.53 (1.115 DF): P = .020
COMPONENT MANUFACTURERS IN THE GROWTH PHASE

VBLs NUMBERED AS FOLLOWS:
1. CUSTOMIZATION
2. RE FREQ PRD CH
3. TECHNOL CHANGC
4. RE DEV TIME
5. %SMALL BATCHS
6. TOTAL R&D/REV A
7. PERFORMANCE

DATA ARE IN WFL 2: 99 OBS ON 7 VBLs.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.3483</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.3535</td>
<td>.2627</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.0877</td>
<td>-.0414</td>
<td>-.0060</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-.0149</td>
<td>.1351</td>
<td>-.0282</td>
<td>-.4059</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.1207</td>
<td>.3153</td>
<td>.4875</td>
<td>-.1954</td>
<td>.2807</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-.0332</td>
<td>-.0208</td>
<td>.0186</td>
<td>-.0151</td>
<td>-.1995</td>
<td>.0889</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF THE REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th>NAT:</th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CONSTANT</td>
<td>31.98</td>
<td>3.95</td>
<td>.000</td>
</tr>
<tr>
<td>5 %SMALL BATCHS</td>
<td>-.2044</td>
<td>1.019</td>
<td>.024</td>
</tr>
</tbody>
</table>

EST. RES. SD 30.86
AV. FCST SD 31.50
SAM. RES. SD 30.55
SAM. R SQR .0398
F = 4.02 (1,97 DF): P = .048
COMPONENT MANUFACTURERS IN THE MATURE PHASE

VBLs numbered as follows:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 %SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 227 OBS ON 7 VBLs.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.1357</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.0171</td>
<td>.2528</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-.0083</td>
<td>-.0175</td>
<td>.1112</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-.0038</td>
<td>-.1759</td>
<td>-.1707</td>
<td>.0427</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-.1505</td>
<td>-.0262</td>
<td>.0756</td>
<td>.0811</td>
<td>.2080</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-.0704</td>
<td>-.0636</td>
<td>.0586</td>
<td>-.2001</td>
<td>.1133</td>
<td>.1609</td>
<td>1.00</td>
</tr>
</tbody>
</table>
MANUFACTURERS OF SUPPLIES IN THE GROWTH PHASE

VBLS NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 %SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 50 OBS ON 7 VBLS.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.0128</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.1247</td>
<td>.0066</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.2073</td>
<td>.2054</td>
<td>.0337</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.4186</td>
<td>.1311</td>
<td>-.2260</td>
<td>.1453</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-.0256</td>
<td>.1089</td>
<td>-.1845</td>
<td>-.0454</td>
<td>.1369</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-.1408</td>
<td>-.1057</td>
<td>.3077</td>
<td>.0952</td>
<td>-.0510</td>
<td>-.2138</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF THE REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CONST</td>
<td>19.60</td>
<td>7.01</td>
<td>.004</td>
</tr>
<tr>
<td>3 TECHNOL CHANGC</td>
<td>19.34</td>
<td>8.63</td>
<td>.015</td>
</tr>
</tbody>
</table>

EST.RES.SD 28.91
AV.FCST SD 30.11
SAM.RES.SD 28.32
SAM. R SQR .0947
F - 5.02 (1,48 DF): P - .030
SUPPLIES MANUFACTURERS IN THE MATURE PHASE

VBLs NUMBERED AS FOLLOWS:
1 CUSTOMIZATION
2 RE FREQ PRD CH
3 TECHNOL CHANGC
4 RE DEV TIME
5 %SMALL BATCHS
6 TOTAL R&D/REV A
7 PERFORMANCE

DATA ARE IN WFL 2: 178 OBS ON 7 VBLs.

THE CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.0484</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0587</td>
<td>-0.0085</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0371</td>
<td>0.0742</td>
<td>0.1927</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0748</td>
<td>-0.0966</td>
<td>0.0205</td>
<td>-0.1573</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.1004</td>
<td>-0.0490</td>
<td>0.2725</td>
<td>0.1494</td>
<td>0.006</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0003</td>
<td>-0.0013</td>
<td>0.0073</td>
<td>0.1334</td>
<td>-0.2112</td>
<td>-0.0705</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

RESULTS OF THE REGRESSION ANALYSIS

DEP.VBL: PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>EST</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CON</td>
<td>19.05</td>
<td>2.45</td>
<td>.000</td>
</tr>
<tr>
<td>5 %SM</td>
<td>- .1486</td>
<td>.0519</td>
<td>.002</td>
</tr>
</tbody>
</table>

EST. RES. SD 25.75
AV. FCST SD 26.04
SAM. RES. SD 25.61
SAM. R SQR .0446
F = 8.21 (1, 176 DF): P = .005
1985

85/01 Jean DERMINE

85/02 Philippe A. NAERT and Els GIJSBRECHTS
"Diffusion model for new product introduction in existing markets".

85/03 Philippe A. NAERT and Els GIJSBRECHTS
"Towards a decision support system for hierarchically allocating marketing resources across and within product groups".

85/04 Philippe A. NAERT and Marcel NEVERBERGH
"Market share specification, estimation and validation: towards reconciling seemingly divergent views".

85/05 Ahmet AYKAC, Marcel CORSTJENS, David GAUTSCHI and Ira MOROVITZ

85/06 Kasra FERDOUS

85/07 Kasra FERDOUS, Jeffrey G. MILLER, Jinchiro NAKANE and Thomas E. VOLLJANN.
"Evolving manufacturing strategies in Europe, Japan and North-America".

85/08 Spyros MAKRIDAKIS and Robert CARBONE
"Forecasting when pattern changes occur beyond the historical data", April 1985.

85/09 Spyros MAKRIDAKIS and Robert CARBONE

85/10 Jean DERMINE
"Portfolio optimization by financial intermediaries in an asset pricing model".

85/11 Antonio M. BORGES and Alfredo M. PEREIRA
"Energy demand in Portuguese manufacturing: a two-stage model".

85/12 Arnoud DE MEYER
"Defining a manufacturing strategy - a survey of European manufacturers".

85/13 Arnoud DE MEYER
"Large European manufacturers and the management of R & D".

85/14 Ahmet AYKAC, Marcel CORSTJENS, David GAUTSCHI and Douglas L. MACLACHLAN
"The advertising-sales relationship in the U.S. cigarette industry: a comparison of correlational and causality testing approaches".

85/15 Arnoud DE MEYER and Roland VAN DIERDONCK
"Organizing a technology jump or overcoming the technological hurdle".

85/16 Hervig M. LANGOHR and Antony M. SANTOMERO
"Commercial bank refinancing and economic stability: an analysis of European features".

85/17 Manfred F.R. KETS DE VRIES and Danny MILLER
"Personality, culture and organization".

85/18 Manfred F.R. KETS DE VRIES
"The darker side of entrepreneurship".

85/19 Manfred F.R. KETS DE VRIES and Dany MILLER
"Narcissism and leadership: an object relations perspective".

85/20 Manfred F.R. KETS DE VRIES and Dany MILLER
"Interpreting organizational texts".

85/21 Hervig M. LANGOHR and Claude J. VIALLET

85/22 Hervig M. LANGOHR and B. Espen ECKBO

85/23 Manfred F.R. KETS DE VRIES and Dany MILLER
"Barriers to adaptation: personal, cultural and organizational perspectives".

85/24 Spyros MAKRIDAKIS
"The art and science of forecasting: an assessment and future directions".

85/25 Gabriel HAVANINI

85/26 Karel O. COOL and Dan E. SCHENDEL

85/27 Arnoud DE MEYER
"European manufacturing: a comparative study (1985)".

1986

86/01 Arnoud DE MEYER
"The R & D/Production interface".

86/02 Philippe A. NAERT and Guido Verswijvel

86/03 Michael BRATM
"Sponsorship and the diffusion of organizational innovation: a preliminary view".

86/04 Spyros MAKRIDAKIS and Michele HIBON
"Confidence intervals: an empirical investigation for the series in the M-Competition".

86/05 Charles A. WIPLOFSZ
86/06 Francesco GIAVAZZI, Jeff R. SHREM and Charles A. VYPLOSZ

86/07 Douglas L. MacLACHLAN and Spyros MAKRIDAKIS

86/08 José de la TORRE and David H. NECKAR

86/09 Philippe C. HASPESLAGH

86/10 R. MOENART, Arnoud DE METER, J. BARBE and D. DESCHOOLMEESTER.
"Analysing the issues concerning technological de-maturity".

86/11 Philippe A. NAERT and Alain BULTEZ
"From "Lydiametry" to "Pinkhamization": misspecifying advertising dynamics rarely affects profitability".

86/12 Roger BETANCOURT and David GAUTSCHI
"The economics of retail firms", Revised April 1986.

86/13 S.P. ANDERSON and Damien J. NEVEN
"Spatial competition à la Cournot".

86/14 Charles WALDMAN

86/15 Mihkel TOMMAK and Arnoud DE MEYER
"How the managerial attitudes of firms with PMS differ from other manufacturing firms: survey results", June 1986.

86/16 B. Espen ECKRO and Berwig K. LANCONIR
"Les primes des offres publiques, la note d'information et le marché des transferts de contrôle des sociétés".

86/17 David B. JENISON

86/18 James TEBOU and V. MALLERET
"Towards an operational definition of services", 1986.

86/19 Rob R. WEITZ
"Nostradamus: a knowledge-based forecasting advisor".

86/20 Albert CORHAY, Gabriel HAVAVINI and Pierre A. MICHEL

86/21 Albert CORHAY, Gabriel A. HAVAVINI and Pierre A. MICHEL

86/22 Albert CORHAY, Gabriel A. HAVAVINI and Pierre A. MICHEL

86/23 Arnoud DE METER

86/24 David GAUTSCHI and Vithala R. RAO

86/25 H. Peter GRAY and Ingo WALTER

86/26 Barry EICHENGREEN and Charles VYPLOSZ

86/27 Karel COOL and Ingemar DIERICKX
"Negative risk-return relationships in business strategy: paradox or truism?", October 1986.

86/28 Manfred KETS DE VRIES and Danny MILLER
"Interpreting organizational texts.

86/29 Manfred KETS DE VRIES
"Why follow the leader?".

86/30 Manfred KETS DE VRIES
"The succession game: the real story.

86/31 Arnoud DE MEYER
"Flexibility: the next competitive battle", October 1986.

86/31 Arnoud DE MEYER, Jinichiro NAKANE, Jeffrey G. MILLER and Kasra PERDOVS
"Flexibility: the next competitive battle", Revised Version: March 1987

86/32 Karel COOL and Dan SCHENDEL

86/33 Ernst BAITEMSPERGER and Jean DERMINE

86/34 Philippe HASPESLAGH and David JEMISON

86/35 Jean DERMINE
"Measuring the market value of a bank, a primer", November 1986.

86/36 Albert CORHAY and Gabriel HAVAVINI

86/37 David GAUTSCHI and Roger BETANCOURT
"The evolution of retailing: a suggested economic interpretation".

86/38 Gabriel HAVAVINI

"Capital flows liberalization and the EMS, a French perspective", December 1986.

"Value added tax and competition", December 1986.

"Why the EMS Dynamic games and the equilibrium policy regime, May 1987.

"The demand for retail products and the household production model: new views on complementarity and substitutability".

"Is there a capital shortage in Europe?", August 1987.

"Spatial competition and the Core", August 1987.

"Why the EMS Dynamic games and the equilibrium policy regime, May 1987.

"The demand for retail products and the household production model: new views on complementarity and substitutability".

"Is there a capital shortage in Europe?", August 1987.

"Spatial competition and the Core", August 1987.

"Why the EMS Dynamic games and the equilibrium policy regime, May 1987.

"The demand for retail products and the household production model: new views on complementarity and substitutability".

"Is there a capital shortage in Europe?", August 1987.

"Spatial competition and the Core", August 1987.

"Why the EMS Dynamic games and the equilibrium policy regime, May 1987.

"The demand for retail products and the household production model: new views on complementarity and substitutability".

"Is there a capital shortage in Europe?", August 1987.

"Spatial competition and the Core", August 1987.
87/31 Martine QUINZII and Jacques-François THISSE September 1987.
"On the optimality of central places?,

"German, French and British manufacturing strategies less different than one thinks?,

87/33 Yves DOZ and Amy SHUEN September 1987.
"A process framework for analyzing cooperation between firms?,

87/34 Kasra FERDOUS and Arnoud DE MEYER September 1987.
"European manufacturers: the dangers of complacency. Insights from the 1987 European manufacturing futures survey,

"Competitive location on networks under discriminatory pricing?,

87/36 Manfred KETS DE VRIES October 1987.
"Prisoners of leadership?, Revised version

87/37 Landis GABEL October 1987.
"Privatization: its motives and likely consequences?,

87/38 Susan SCHNEIDER October 1987.
"Strategy formulation: the impact of national culture?,

"The dark side of CEO succession?,

"Product compatibility and the scope of entry?,

87/41 Cavriel HAWAWINI and Claude VIALLET November 1987.
"Seasonality, size premium and the relationship between the risk and the return of French common stocks?,

87/42 Damien NEVEN and Jacques-F. THISSE December 1987.
"Combining horizontal and vertical differentiation: the principle of max-min differentiation?,

87/43 Jean GABSZEVICZ and Jacques-F. THISSE December 1987.
"Location?,

"Spatial discrimination: Bertrand vs. Cournot in a model of location choice?,

"Business strategy, market structure and risk-return relationships: a causal interpretation?,

"Asset stock accumulation and sustainability of competitive advantage?,

88/01 Michael LAURENCE and Spyros MAKRIDAKIS January 1988.
"Factors affecting judgemental forecasts and confidence intervals?,

88/02 Spyros MAKRIDAKIS January 1988.
"Predicting recessions and other turning points?,

"De-industrialize service for quality?,

"National vs. corporate culture: implications for human resource management?,

88/05 Charles WYPLOSZ January 1988.
"The swinging dollar: is Europe out of step?,

"Les conflits dans les canaux de distribution?,

and Karel COOL

and Susan SCHNEIDER

"Issues in the study of organizational cognition?,

"Price formation and product design through bidding?,

"The robustness of some standard auction game forms?,

88/12 Spyros MAKRIDAKIS February 1988.
"Business firms and managers in the 21st century?,

"Alexithymia in organizational life: the organization man revisited?,

88/14 Alain NOEL February 1988.
"The interpretation of strategies: a study of the impact of CEOs on the corporation?,

"The production of and returns from industrial innovation: an econometric analysis for a developing country?,

"Monopolistic competition, costs of adjustment and the behavior of European employment?,

88/18 Michael BURDA

88/19 M.J. LAWRENCE and Spyros MAKRIDAKIS

88/20 Jean DERMIINE, Damien NEVEN and J.F. THISSE

88/21 James TEOUL
"De-industrialize service for quality", March 1988 (88/03 Revised).

88/22 Lars-Hendrik RÖLLER
"Proper Quadratic Functions with an Application to AT&T", May 1987 (Revised March 1988).

88/23 Sjur Didrik FLAM and Georges ZACCOUR
"Equilibres de Nash-Cournot dans le marché européen du gaz: un cas où les solutions en boucle ouverte et en feedback coïncident", Mars 1988

88/24 B. Espen ECKBO and Herwig LANGOHR

88/25 Everette S. GARDNER and Spyros MAKRIDAKIS

88/26 Sjur Didrik FLAM and Georges ZACCOUR

88/27 Murugappa KRISHNAN and Lars-Hendrik ROLLER

88/28 Sumantra GHOSHAL and C. A. BARTLETT

88/29 Naresh K. MALHOTRA, Christian PINSON and Arun K. JAIN

88/30 Catherine C. ECKEL and Theo VERMAELEN

88/31 Sumantra GHOSHAL and Christopher BARTLETT

88/32 Kasra FERDOWS and David SACKRIDER