
by

Jean DERMIJE*
and
Pierre HILLION**

N° 89 / 35

* Associate Professor of Finance, INSEAD, Boulevard de Constance, 77305 Fontainebleau, France

** Assistant Professor of Finance, INSEAD, Boulevard de Constance, 77305 Fontainebleau, France

Director of Publication:

Charles WYPLOSZ, Associate Dean for Research and Development

Printed at INSEAD, Fontainebleau, France
Deposit Rate Ceilings and the Market Value of Banks,
The Case of France 1971-1981

by J. DERMINE and P. HILLION*

INSEAD, Fontainebleau
May 1989

* Careful data collection and computing assistance by Martine Langohr and Jay Wortmann are gratefully acknowledged as well as financial support from INSEAD (project 2040).
Abstract

The goal of the paper is to assess the relationship between the market value and the asset-liability structure of French banks listed on a Stock Exchange. A simple bank valuation model is developed and empirically tested. The paper attempts to evaluate the rent on deposits subject to interest rate ceilings and to analyse the determinants of the 1974 drop in banks' market values.
1. Introduction

There is a long tradition of deposit rate controls in France. Interest payments on demand deposits are prohibited and ceilings on savings and term deposit interest rates have been enforced for many years. This form of regulation could increase the profitability of banks and their market values. However, non-price competition means such as branching and free-checking or disintermediation could reduce the extent of regulatory rents in a competitive economy. The purpose of the paper is to assess the relation between the market value and the asset-liability structure of French banks listed on a stock exchange.

In an efficient market, the market value of a bank equity should reflect the risk-adjusted capitalised value of expected future dividends. Therefore, a high market value should be associated with high profitability. An analysis of the relationship between the market value and the asset-liability structure of banks should help trace the importance of rents on specific assets and liabilities.

This paper investigates the determinants of the market value of French banks. With its emphasis on market values, it contrasts sharply with traditional 'event' studies\(^1\). Whereas these studies evaluate the abnormal returns associated with a change in the economic environment, this paper analyses the bank specific sources of wealth. Moreover, it differs in method from the Pelzman (1968) and Kyle-Sachs (1984) papers which use mostly income variables to explain the market to book value ratio of American banks. The approach followed in this paper uses a simple bank valuation model which predicts the relationship between the asset-liability structure and the market value. It can be viewed as a Modigliani-Miller type of model applied to the case of a bank where the market value of equity is defined as the sum of the current value of assets net of the liabilities.

Three hypotheses pertaining to the effect of corporate taxation, the importance of rents and the sources of the 1974 drop in the market value of French banks are empirically tested. The findings can be summarized as follows. First, corporate taxation has a significant negative effect on the market value of assets and liabilities. Second, there is a statistically significant positive association between the size of demand deposits subject to a zero interest rate ceiling and the market value of equity. Third, the substantial drop in the market to book value ratio observed since 1974 is associated with a lower valuation of all banks' assets, including short-term Treasury Bills and interbank claims. This contrasts sharply with the conjecture of Maisel (1981) who explains the drop in the market to book value ratio of American banks by a lower valuation of loans and long-term fixed-rate securities.

The paper is organized as follows. The issues in profitability evaluation are discussed in section 2, followed by a description of the model and by the testable propositions. The French banking system and the sample are presented in section 3 and the empirical evidence is reported in section 4. The last section concludes the paper.

2. The Valuation Model

The purpose of the paper is to assess the extent of superior profits or rents on specific assets or liabilities. In the banking literature, Statistical Cost Accounting (Hester-Pierce, 1975) is a well known approach to study the determinants of profitability. A review of the shortcomings of this methodology is followed by a description of the valuation model and the testable propositions.

2.1 Issues in Profitability Analysis

Statistical cost accounting assumes that bank profit is a linear function of the banks' various assets and liabilities. The estimated parameters represent the costs and returns of the corresponding liabilities and assets. This approach suffers from four shortcomings. First, accounting numbers blur bank profit measures by the accounting conventions for interest accruals and valuation rules. Second, accounting measures of profitability
and its sources are not adjusted for risk (Ratti, 1980). Third, an observed intermediation margin can be purely transitory if the adjustment or transaction costs of reaching equilibrium are more than trivial. Finally, in a risk sharing perspective (Okun, 1981) where borrowers or lenders agree to fix specific margins for different states of the world, observed margins are equilibrium ones only in a particular state of the world. This would not represent a rent, however, as an 'average' measure of profits across all possible states of the world would be necessary. For all these reasons, the use of accounting return and cost estimates as evidence of positive or negative rents present serious shortcomings.

The analysis of the market value of equity offers an alternative approach to measuring the existence of rents. Lindenberg and Ross (1981) and Smirlock, Gilligan, Marshall (1984) applied the Tobin's approach i.e., the ratio of market value of an asset to its replacement cost to problems of industrial organisation. In an efficient market, stock prices account for the measurement problem and the disequilibrium, risk sharing or risk aversion parameters. High market values relative to replacement costs are then signals of risk and time path adjusted sources of wealth accruing to the firm. These sources could be regulatory rents, firm specific proprietary knowledge or expertise.

The methodology used in the paper differs from the existing literature. Pelzman (1968) analyzed the determinants of the q ratio with a Durand type valuation model focusing on income variables. Kyle and Sachs (1984) expanded the Pelzman approach by adding to the income variables an international loan variable. The approach followed here does not focus on income variables. Consistent with a valuation model of the banking firm, it concentrates exclusively on balance sheet variables. The main advantages of this approach are to bypass problems of correlation between income and asset variables and to search for rents on specific assets or liabilities.

1 See the related papers by James (1983) and Dann and James (1982). They use an event study approach to measure the effect of a regulatory change on bank stock prices.
2.2 The Valuation Model

The valuation model is a Modigliani-Miller type model adapted to the banking industry. An infinitively lived bank is assumed to fund a portfolio of perpetual loans (L) and bonds (B) which carry fixed interest rates, p and b, respectively. These assets are financed with perpetual deposits (D) and equity (E). Deposits offer a fixed deposit rate d. Loans, bonds, deposits and equity are recorded at their historical acquisition cost. The current one-year return on similar assets and liabilities are p*, b* and d* respectively, assumed constant over time. These rates are net of operating costs. The bond and equity markets are assumed perfectly elastic and the (certainty equivalent) cost of equity is the bond market return b*, the opportunity return available to shareholders. These assumptions are consistent with the neoclassical model of the banking firm\(^1\). The particular structure of the model calls for a comment. The return and cost p* and d* respectively are defined as net of the price for risk, and the existence of interest rate differentials is not ruled out. These are consistent with regulatory rents, imperfect competition or barriers to entry which could prevent the creation of perfect substitutes. The relevance of any of these possibilities is an open question which can be solved empirically. The balance sheet of a representative bank is described in Figure One:

\begin{center}
\begin{tabular}{ll}
Loan L (p) & Deposits D (d) \\
Bonds B (b) & Equity E (b*) \\
\end{tabular}
\end{center}

Remarks: Assets and deposits are perpetuities
Book returns are denoted by p, b, d
Current rates are denoted by p*, b*, d*

\(^1\) Microeconomic model originally presented in Klein (1971), Monti (1972) and further developed in Dermine (1986). The model assumes that the optimal volumes of loans and liabilities are determined by marginal return and cost considerations.
Assuming that the after tax profit is paid out as dividends, the market value of this perpetual bank denoted by MV is:

\[MV = \frac{(1-\tau)(pL + bB - dD)}{b^*}, \tag{1} \]

or

\[MV = \frac{(1-\tau)p}{b^*} x L + \frac{(1-\tau)b}{b^*} x B - \frac{(1-\tau)d}{b^*} x D, \tag{2} \]

where \(\tau \) is the corporate tax rate.

The market value of the equity is simply the sum of the net assets valued at the current market rate \(b^* \). The goal of the empirical analysis is to estimate and draw inferences about the coefficients \(\frac{(1-\tau)p}{b^*} \), \(\frac{(1-\tau)b}{b^*} \), and \(\frac{(1-\tau)d}{b^*} \) associated with the loans, the bonds and the deposits, respectively. These coefficients are likely to differ from one because of the incidence of the corporate tax and/or the difference between the book return \((p,b,d) \) and the market return \((b^*) \). The latter difference may be due to rents when the current rate (say \(p^* \) or \(d^* \)) differs from \(b^* \), or to accounting rules when the book return \((p) \) differs from the current rate \((p^*) \), or both.

Conjectures about the value of some of these coefficients are possible. In particular, the coefficient of short term treasury bills or interbank assets should be equal to \((1-\tau) \) since these instruments are traded on perfectly competitive market. Similarly, the valuation coefficient of short term deposits should be lower than the one of treasury assets when the deposit rate \(d^* \) is smaller than \(b^* \). Moreover, a higher tax penalty should not be precluded in period of inflation. Theory shows that banks, which are net holders of financial assets, are penalized since they are taxed on their nominal income (Dermine, 1985)\(^1\). This suggests the following three

\[^1\] The inflation premium increases the nominal interest rate and the net interest margin, but, because of taxation, fails to compensate fully for the erosion of value.
testable propositions:

P1: The valuation coefficient of short term treasury asset is smaller for taxable banks than for non-taxable institutions. This reflects a tax penalty.

P2: The valuation coefficient of short term treasury assets falls in period of inflation. This reflects an inflation tax.

P3: The valuation coefficient of the treasury asset is larger than the valuation coefficient of short term deposits. This reflects the rent effect on deposits.

3. The Sample

Some relevant characteristics of the French banking system are presented in this section, followed by a description of the sample.

3.1 The Structure of the French Banking System

According to the 1945 Banking Law, the registered banks ('banques inscrites') fall into three categories: the deposit banks ('banques de dépôts'), the merchant banks ('banques d'affaires') and the long and medium term credit banks ('banques de crédits à moyen et long terme'). The main activity of deposit banks is to carry credit operations and to receive demand and time deposits from the public. The activities of merchant banks are, besides granting loans, to take equity participations in existing concerns or in the process of being established. The role of medium and long term credit banks is to grant loans with a maturity of at least two years. Since the 1966 reform, the distinction is becoming less clear and many banks have evolved towards the universal type. However, the activities of the long and medium term credit banks are still quite specific. A large part of those included in the sample belong to a special category specialized in leasing. These institutions, named SICOMI, hardly pay any
corporate income taxes\(^1\). The recent 1984 Banking Law abolished these categories and created a superstructure ('établissement de crédit') which include all financial institutions (banks, savings banks and finance companies).

Deposit rates are regulated in France by the Conseil National du Crédit. Interest payments on demand deposits were abolished on 1 July 1967 and ceilings on savings and term deposits have been enforced systematically. To illustrate the importance of these ceilings, the interbank rate and the after reserve requirement interest margins on demand deposits, savings deposits and term deposits are reported in Table One. In some years (in particular 1974, 1980 and 1981) these margins are above 10 percent.

Disintermediation was not very important since Money Market Funds ('Sicav de Trésorerie') were only created in the mid-80's.

Insert Table One

3.2 The Sample

The study covers the period 1971-1981. On December 30, 1981, 54 out of the were 397 registered banks in France were listed on a French Stock Exchange. The sample includes 51 banks in 1981. It excludes the three large government-owned national banks\(^2\). Due to availability, all data are end-of-year\(^3\).

\(^1\) The Sociétés d'Investissement pour le Commerce et l'Industrie were created to stimulate industrial investment building. A main characteristic is the almost complete exemption from corporate taxes. A large part of their assets are leases ('crédit bail or location') with a maturity of 15 to 20 years.

\(^2\) The three large national banks (Banque Nationale de Paris, Credit Lyonnais and Société Générale) were nationalized in 1945 and only a small fraction of their shares is listed on the Stock Exchange. The sample is not constant through time as some institutions have been introduced after 1971 or delisted before 1981. The nationalization programme prevents the use of more recent data.

\(^3\) The balance sheet data are taken from the Annuaire Desfossés from 1971 up to 1978 and from the annual publication Bilans des Banques for the remaining years. The end of year market value data are taken from Année Boursière (Compagnie des Agents de Change).
A complete description of the balance sheet structure of the various groups of banks is given in Appendix One. Some characteristics of the sample are striking. The surprisingly high equity ratio for the total sample (16% in 1981) is caused by the financial structure of the long and medium term credit banks. It is interesting to observe that these banks which hardly pay any corporate income tax operate with an equity ratio of 31% in 1981.

In France, as in other countries, a general downward trend in the equity to assets ratio for the various categories of banks is observed, as well as a substantial decrease in the ratio of market to book value in 1974. The ratio falls to 1.02 in 1974 from an average of 1.45 over the years 1971-1973. A similar reduction was observed in the United States (Maisel, 1981). Moreover, money market funding is increasing sharply over the period and demand deposit funding is important. The large volume of fixed assets is explained by the Sicomis, the long and medium term credit banks specialized in leasing, mostly financed on the money and capital markets.

4. Empirical Tests of the Model

4.1 Methodological Issues

For empirical testing purposes, the valuation model specified in equation (2) must be adapted for three reasons. First, an error term must be included to account for the variables not specified in the model, such as superior performances in terms of control of costs or revenues. Second, the specific tax treatment of dividend income must be explicitly modeled. Third, the variables on the left and right hand sides of equation (2) must be divided by a firm specific variable to control for heteroskedasticity. The last two issues are discussed in greater detail below.

The French income tax rebate implies that the before personal tax cash flow available to shareholders is equal to the dividend income grossed up by 50%\(^1\). The tax rebate, however, does not apply to the Sicomis which are not subject to corporate taxation. Accordingly, the tax factor \((1-t)\) in

\(^1\) See Pène (1983). Personal taxes are assumed to be neutral with respect to the valuation model. This is not unrealistic as personal tax rules in France imply that only very large capital gains and dividend incomes are taxed.
equation (2) is replaced by a dummy variable taking on a value equal to 1.5 (1-\(t\)) for non-Sicomi banks and to 1 for Sicomis.

Heteroskedasticity arising from size differential has received some attention in the cost accounting literature. A way to minimize the impact of heteroskedasticity on the standard errors estimates of the regression coefficients is to divide the left and right hand sides of equation (2) by a firm specific variable. A possible choice, consistent with Tobin's q ratio, is the book value of equity. This variable is inadequate, however. Standardizing the dependant and explanatory variables by the book value of equity introduces multicollinearity. This problem originates from the balance sheet equality\(^1\). A more appropriate variable is "total assets". The standard error estimates obtained with White's (1980) heteroskedastic consistent variance matrix estimator are extremely close to their OLS counterparts for all the regressions performed in the paper. The trivial difference between the two sets of estimates suggests that heteroskedasticity is well controlled for after standardizing all the variables by "total assets"\(^2\). Further, the multicollinearity diagnostic of Belsey, Kuh and Welsh (1980) based on the singular decomposition of the data matrix indicates that this standardization does not introduce any multicollinearity problem.

The three null hypothesis are empirically tested by relating in a cross-sectional regression the standardized market value of the bank at time \(t\), as the dependant variable, to the (standardized) assets and (standardized) liabilities measured at end of year \(t\), as the explanatory variables. The assets and liabilities are the fixed assets (FA), credit (CRE), net money market assets (TR), net long term investment and participation (PORT), demand deposits (DEDE), term deposits (TEDE) and savings deposits (SADE). Fixed assets are included for their abandonment or leasing values. The regression is,

\[\text{Equation (2)} \]

\(^1\) The sum of the assets divided by the book value of equity is equal to the sum of the liabilities divided by the equity plus one.

\(^2\) The OLS standard error estimates or \(t\)-statistics are, therefore, the only ones reported in the paper.
\[MV_{it} = \alpha_{0t} PA_{it} + \alpha^S_{it} FAS^S_{it} + \alpha^1_{it} CRE_{it} + \alpha^S_{1t} CRE^S_{it} + \alpha^2_{2t} TR_{it} + \]
\[\quad + \alpha^S_{2t} TR^S_{it} + \alpha^3_{3t} PORT_{it} + \alpha^S_{3t} PORT^S_{it} + \alpha^4_{4t} DEDE_{it} + \alpha^S_{4t} DEDE^S_{it} + \]
\[\quad + \alpha^5_{5t} TEDE_{it} + \alpha^S_{5t} TEDE^S_{it} + \alpha^6_{6t} SADE_{it} + \alpha^S_{6t} SADE^S_{it} + \varepsilon_{it}, \quad (3) \]

where the superscript 's' designates Sicomi banks and \(N_t \) is the sample size at time \(t \). As mentioned earlier, the dependant and explanatory variables are divided by "total assets".

As equation (3) indicates, the number of parameters to be estimated is rather large relative to sample size. Constraints can be imposed on the model to decrease the number of parameters and hence increase the number of degrees of freedom. Two approaches are suggested to achieve that goal. In the first approach, a constraint is imposed on the tax penalty differential between Sicomi and non-Sicomi banks. More specifically, the regression coefficients associated with a specific explanatory variable are assumed identical up to a proportional factor,

\[\alpha_{ijt} = \phi \alpha^S_{ijt}, \forall j, \quad (4) \]

where \(j \) denotes a particular explanatory variable. For a tax rate of 48%, the proportional factor \(\phi \) is equal to 1.28. In the second approach, a constraint is imposed on the stationarity over time of the regression coefficients thereby justifying the pooling of several years of data.

The cross-sectional regressions are run with and without imposing the constraints. These are referred to as the constrained and unconstrained regressions, respectively. The results obtained with the latter are first discussed.
4.2 The unconstrained regressions

The cross-sectional regression, specified in equation (3), is run eleven times, one for each year of the 1971-1981 time period. The regression coefficients are unconstrained except for those of DEDE, SADE and TEDE for which a proportional tax factor of 1.28 is imposed. To assess the importance of the tax penalty, the inflation and the rent effects, the null hypotheses,

\[H_0^1 : \alpha_{2t}^S = \alpha_{2t}^S, \forall t \in [1971, 1981], \]

\[H_0^2 : \alpha_{2(74-81)} = \alpha_{2(71-73)}', \]

\[H_0^3 : \omega_{4t}^e = \alpha_{2t}, \forall t \in [1971, 1981], \]

are tested, with conventional F statistics.

The results are reported in Table 2.

Insert Table 2

Table 2 indicates that the regression coefficients have the correct signs. The coefficients associated with assets (liabilities) variables are positive (negative). One exception is the coefficient of \(CRES \) which is not statistically significant. The null hypothesis \(H_0^1 \) (taxation) testing the equality of the regression coefficients of the treasury assets for banks that do and do not (Sicomis) pay corporate taxes is rejected by the data. The estimates obtained for Sicomis are higher than their non-Sicomi counterparts in 10 out of the 11 years in the total sample period. The

1 This constraint is innocuous since Sicomi banks only use these sources of funds marginally.
F test indicates that the difference is statistically significant in only eight cases. Similarly, the null hypothesis H_0^2 (inflation) testing the equality of the regression coefficients and of the treasury assets in the 1971-1973 and 1979-1981 subperiods is also rejected. A statistically significant drop in the estimate is observed after 1973 when inflation started. The third hypothesis H_0^3 (regulation) testing the equality of the regression coefficients obtained for the demand deposits and the treasury assets is not rejected, however. The difference is never statistically significant.

These results are robust to alternative specifications of equation (3) like, for example, the inclusion of an intercept. The results are not reported for sake of space limitation.

4.3 The constrained regressions

As explained earlier, two sets of constrained regressions are performed. The regression coefficients of Sicomi assets are first assumed to be equal to their non-Sicomi counterparts up to a proportional factor. This constraint is imposed on all the coefficients excepted the fixed assets. To account for a potentially higher effective tax factor in periods of inflation, all Sicomi variables are multiplied by a scalar ranging from 1.28 to 3. The lower bound is suggested by corporate taxation and the proportional factor discussed above while the upper bound range is consistent with the unconstrained estimates (see Table 2). For each year in the 1971-1981 period, the cross-sectional regression

\[MV_{it} = \alpha_0 F_{it}^S + \alpha S F_{it}^S + \alpha_1 CRE_{it} + \alpha_2 TR_{it} + \alpha_3 PORT_{it} + \alpha 4t DEDE_{it} + \alpha 5t TEDE_{it} + \alpha 6t SADE_{it} + \epsilon_{it} \]

\[\psi \in [1, N_t], \psi_t \in [1971, 1981], \]

1 This hypothesis is tested by pooling the 11 years of data and by adding dummy variables for all the variables in the 1974-1981 subperiod.
2 This coefficient increases in 1978, the only year inflation and long-term rates decreased.
3 The leasing activity of Sicomis may justify a different valuation factor.
is run. The results obtained with the two extreme values of the scalar, 1.28 and 3, are reported in Tables 3a and 3b respectively.

Insert Tables 3a, 3b

The first hypothesis is not testable because of the constraints imposed upon the regression coefficients. Only the last two hypotheses can be tested. The empirical evidence in Tables 3a and 3b support the previous findings. Namely, a significant drop in the coefficient of the treasury assets is observed after 1974. Also, the regression coefficient of the demand deposits is smaller than its treasury assets counterpart, although the difference is not statistically significant. These inferences are robust to the choice of any intermediary value of the scalar between 1.28 and 3. An increase in the tax scalar produces a decrease in the coefficients estimates of non Sicomi banks. This result is consistent with the unconstrained regressions (See Table 2).

Constraints on the time stationarity of the coefficients are then imposed. Instead of running one cross-sectional regression per year, several years of data are pooled. Two time series cross sectional regressions are performed, one for each of the two 1971-1973 and 1974-1981 sub-periods. This, however, is likely to introduce a new econometric problem. The assumption of serially uncorrelated residuals is not tenable, since a bank performing well in one year is likely to do well in another year. To correct the standard error estimates for the regression parameters for serially correlated residuals, the seemingly unrelated regression (SUR) approach of Zellner (1962) is used and equality constraints are imposed on the regression parameters, i.e.,

\[a_{ijt} = a_{ijt+1} \quad \forall t \in [1971 - 1973] \quad \text{or} \quad \forall t \in [1974 - 1980]. \]

1 The partitioning of the data into these two particular sub periods is rather arbitrary. A less ad hoc procedure would have been to use the switching regression of Quandt (1972). However, the small sample size i.e., 11 years of data, prevented us from using this methodology.
In each of the two subperiods, the following time-series cross-sectional regression is run,

\[MV_{it} = \alpha_{0t} FA_{it} + \alpha_{0t} FS_{it} + \alpha_{1t} CRE_{it} + \alpha_{2t} TR_{it} + \alpha_{3t} PORT_{it} + \alpha_{4t} DEDE_{it} + \alpha_{5t} TEDE_{it} + \alpha_{6t} SADDE_{it} + \epsilon_{it}, \]

\(Vi \in \{1, N_t\}, \) and \(V_t \in [1971-1973] \) or \([1974-1981]\).

The tax scalar is set equal to 1.28 in the first sub-period 1971-1973 and to 3 in the higher inflation subperiod 1974-1981. The results are reported in Table 4.

Insert Table 4

Though not reported, the residuals are found to be highly serially correlated in both subperiods. Also, as expected, the statistical significance of the SUR estimates is substantially higher than that of the OLS estimates. The most important result concerns the test of the third hypothesis (regulation). Unlike the results obtained in the previous regressions, the demand deposit coefficient is lower than the treasury asset one in the 1974-1981 subperiod, and most importantly the difference is found statistically significant\(^1\). This result is consistent with the stock market attributing a rent to the demand deposits on which a zero interest rate regulation applies.

\(^1\) This result would not hold if a tax scalar of 1.28 was used during the subperiod 1974-1981. Since the market value of Sicomi banks is relatively higher than the one on non-sicomis in periods of inflation, a too small tax scalar induces high parameter estimates for assets (liabilities) specific to sicomis and low estimates for assets (liabilities) specific to non-sicomis, such as demand deposits. The scalar of 3 is preferred in the inflation period to avoid a bias against the demand deposit coefficient estimate.
5. Conclusions

An asset-liability analysis of the market value of the equity of banks is a promising method to infer market valuation factor of various assets and liabilities and also to assess the importance of rents. The model is empirically tested on a sample that contains the French banks listed on a Stock Exchange. Three hypotheses pertaining to the negative effect of corporate taxation and inflation and to the positive effect of regulation on demand deposit rates are examined. The empirical evidence indicates that all assets and liabilities subject to taxation are priced at a lower value from 1974 on and that demand deposits benefited from rents.

The simple model developed in this paper can be improved from several standpoints. Future research could, for instance, attempt to incorporate the value of the implicit put option granted by the French deposit insurance system.
References:

Dermine Jean: "Deposit Rate, Credit Rate and Bank Capital, the Klein-Monti Model Revisited", Journal of Banking and Finance, 10 (1986), 99-114.

Monti Mario: "Deposits, Credit and Interest Rate Determination under Alternative Bank Objective Functions" in Mathematical Methods in Investment and Finance, Shell-Szego (eds.), North Holland, 1972, 431-454.

Okun Arthur M.: Prices and Quantities, a Macroeconomic Analysis, the Brookings Institutions, 1981.

Unal Haluk and Edward J. Kane: "Two Approaches to Assessing the Interest Rate Sensitivity of Deposit - Institutions' Equity Returns", WPS 86-125, College of Business, Ohio State University, 1986.

Table One: Interest Margins on Demand, Term and Savings Deposits (in %)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interbank rate</td>
<td>6.29</td>
<td>5.51</td>
<td>9.13</td>
<td>13.02</td>
<td>7.84</td>
<td>8.69</td>
<td>9.22</td>
<td>8.16</td>
<td>9.48</td>
<td>12.2</td>
<td>15.26</td>
</tr>
<tr>
<td>Margin on demand deposit</td>
<td>5.66</td>
<td>4.96</td>
<td>7.85</td>
<td>10.8</td>
<td>7.68</td>
<td>8.52</td>
<td>9.03</td>
<td>7.83</td>
<td>9.1</td>
<td>11.4</td>
<td>14.6</td>
</tr>
<tr>
<td>Margin on one month-term deposit</td>
<td>4.0</td>
<td>3.23</td>
<td>6.7</td>
<td>9.5</td>
<td>4.84</td>
<td>5.69</td>
<td>6.7</td>
<td>5.66</td>
<td>6.98</td>
<td>8.6</td>
<td>11.7</td>
</tr>
<tr>
<td>Margin on savings deposits</td>
<td>3.5</td>
<td>2.7</td>
<td>6.2</td>
<td>9.5</td>
<td>4.6</td>
<td>5.44</td>
<td>5.97</td>
<td>4.91</td>
<td>6.23</td>
<td>8.9</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Source: Interbank market rate (International Financial Statistics, line 60 bs); margin on deposits net of reserve requirements (Bulletin Trimestriel de la Banque de France, Tables 31 A and 34)

a) In the period 1969-1975, interest rates on term deposits are free when one of the two conditions are met: more than one year maturity, or more than a month maturity and deposits larger than FF 100,000. These restrictions are respectively 2 years and FF 200,000 in the period 1975-1979 and one year and FF 100,000 in the period 1979-1981.
Table Two: Estimates and Statistical Significance (t-statistics) of the parameters of the unconstrained cross-sectional regression (equation 3)

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>R^2</th>
<th>FA</th>
<th>CRE</th>
<th>PORT</th>
<th>TR</th>
<th>DEDE</th>
<th>TEDE</th>
<th>SADE</th>
<th>F-TEST(H_0)</th>
<th>F-TEST(H_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) p-val</td>
<td>(2) p-val</td>
</tr>
<tr>
<td>1971</td>
<td>47</td>
<td>.90</td>
<td>.28</td>
<td>.99</td>
<td>.76</td>
<td>-.61</td>
<td>.71</td>
<td>.87</td>
<td>.92</td>
<td>-.86</td>
<td>-.68</td>
</tr>
<tr>
<td></td>
<td>.04</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>.90</td>
<td>.99</td>
</tr>
<tr>
<td>1972</td>
<td>47</td>
<td>.86</td>
<td>.38</td>
<td>1.12</td>
<td>.80</td>
<td>-.22</td>
<td>.81</td>
<td>1.12</td>
<td>.76</td>
<td>-.77</td>
<td>-.68</td>
</tr>
<tr>
<td></td>
<td>.04</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td>.96</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>52</td>
<td>.95</td>
<td>.31</td>
<td>1.15</td>
<td>.85</td>
<td>.99</td>
<td>.76</td>
<td>1.07</td>
<td>.78</td>
<td>1.18</td>
<td>-.85</td>
</tr>
<tr>
<td></td>
<td>-.94</td>
<td>-.76</td>
</tr>
<tr>
<td></td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>50</td>
<td>.94</td>
<td>.47</td>
<td>.86</td>
<td>.47</td>
<td>.80</td>
<td>.44</td>
<td>.77</td>
<td>.43</td>
<td>.90</td>
<td>-.42</td>
</tr>
<tr>
<td></td>
<td>-.55</td>
<td>-.44</td>
</tr>
<tr>
<td></td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>50</td>
<td>.93</td>
<td>.33</td>
<td>.88</td>
<td>.27</td>
<td>.41</td>
<td>.07</td>
<td>.77</td>
<td>.24</td>
<td>-.15</td>
<td>-.26</td>
</tr>
<tr>
<td></td>
<td>-.62</td>
<td>.045</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>52</td>
<td>.95</td>
<td>.87</td>
<td>.91</td>
<td>.27</td>
<td>-.02</td>
<td>.18</td>
<td>.78</td>
<td>.25</td>
<td>-.24</td>
<td>-.28</td>
</tr>
<tr>
<td></td>
<td>-.37</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>52</td>
<td>.65</td>
<td>.96</td>
<td>.22</td>
<td>-.45</td>
<td>.15</td>
<td>.92</td>
<td>.22</td>
<td>.91</td>
<td>-.19</td>
<td>-.17</td>
</tr>
<tr>
<td></td>
<td>-.4</td>
<td>.15</td>
</tr>
<tr>
<td></td>
<td>.16</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>51</td>
<td>.93</td>
<td>.25</td>
<td>1.37</td>
<td>.88</td>
<td>-.19</td>
<td>.55</td>
<td>1.4</td>
<td>.91</td>
<td>-.9</td>
<td>-.10</td>
</tr>
<tr>
<td></td>
<td>-.63</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>53</td>
<td>.96</td>
<td>1.17</td>
<td>1.61</td>
<td>.29</td>
<td>-.6</td>
<td>.25</td>
<td>2</td>
<td>.28</td>
<td>1.3</td>
<td>-.18</td>
</tr>
<tr>
<td></td>
<td>-.25</td>
<td>-.56</td>
</tr>
<tr>
<td></td>
<td>.12</td>
<td>.05</td>
</tr>
<tr>
<td>1980</td>
<td>52</td>
<td>.97</td>
<td>1.11</td>
<td>1.4</td>
<td>-.22</td>
<td>-.7</td>
<td>.15</td>
<td>1.87</td>
<td>.21</td>
<td>.97</td>
<td>-.10</td>
</tr>
<tr>
<td></td>
<td>-.18</td>
<td>-.56</td>
</tr>
<tr>
<td></td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>51</td>
<td>.96</td>
<td>.84</td>
<td>1.09</td>
<td>.26</td>
<td>-.12</td>
<td>.21</td>
<td>1.29</td>
<td>.26</td>
<td>1.05</td>
<td>-.17</td>
</tr>
<tr>
<td></td>
<td>-.28</td>
<td>-.48</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>.22</td>
</tr>
<tr>
<td></td>
<td>.15</td>
<td></td>
</tr>
</tbody>
</table>

Notation:
- FA = Fixed Assets, CRE = Loan, PORT = Long Term Investment, TR = Net Treasury Assets, DEDE = Demand Deposit, TEDE = Term Deposit, SADE = Savings Deposit

Remarks:
1. The F statistic tests the null hypothesis $H_0: \alpha_1 = \alpha_3 \forall t \in [1971,1981]$ (Taxation hypothesis).
2. The F statistic tests the null hypothesis $H_0: |\alpha_1| = \alpha_3 \forall t \in [1971,1981]$ (Regulation hypothesis).
Table 3a: Estimates and Statistical Significance (t-statistics) of the constrained cross-sectional regression (equation 5) : Tax scalar of 1.28

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>R^2</th>
<th>FA</th>
<th>FA^5</th>
<th>CRE</th>
<th>PORT</th>
<th>TR</th>
<th>DEDE</th>
<th>TEDE</th>
<th>SADE</th>
<th>F-TEST(H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-val(1)</td>
</tr>
<tr>
<td>1971</td>
<td>47</td>
<td>.90</td>
<td>.76</td>
<td>.95</td>
<td>.64</td>
<td>.57</td>
<td>.75</td>
<td>-.72</td>
<td>-.54</td>
<td>-.68</td>
<td>.07</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>47</td>
<td>.87</td>
<td>.42</td>
<td>1.04</td>
<td>.79</td>
<td>.78</td>
<td>.77</td>
<td>-.76</td>
<td>-.70</td>
<td>-.96</td>
<td>.001</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>52</td>
<td>.95</td>
<td>.13</td>
<td>1.13</td>
<td>.90</td>
<td>.81</td>
<td>.87</td>
<td>-.95</td>
<td>-.92</td>
<td>-.78</td>
<td>.69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>50</td>
<td>.94</td>
<td>.32</td>
<td>.85</td>
<td>.61</td>
<td>.60</td>
<td>.62</td>
<td>-.62</td>
<td>-.71</td>
<td>-.49</td>
<td>.001</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>50</td>
<td>.93</td>
<td>.17</td>
<td>.79</td>
<td>.50</td>
<td>.45</td>
<td>.53</td>
<td>-.53</td>
<td>-.51</td>
<td>-.47</td>
<td>.002</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>52</td>
<td>.95</td>
<td>.90</td>
<td>.78</td>
<td>.42</td>
<td>.43</td>
<td>.46</td>
<td>-.49</td>
<td>-.46</td>
<td>-.35</td>
<td>.07</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>52</td>
<td>.94</td>
<td>.74</td>
<td>.78</td>
<td>.43</td>
<td>.48</td>
<td>.50</td>
<td>-.52</td>
<td>-.44</td>
<td>-.37</td>
<td>.06</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>51</td>
<td>.93</td>
<td>.77</td>
<td>1.31</td>
<td>.77</td>
<td>1.06</td>
<td>.76</td>
<td>-.79</td>
<td>-.90</td>
<td>-.05</td>
<td>.05</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>53</td>
<td>.94</td>
<td>1.46</td>
<td>1.32</td>
<td>.72</td>
<td>1.19</td>
<td>.71</td>
<td>-.61</td>
<td>-.75</td>
<td>-.56</td>
<td>.37</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>52</td>
<td>.95</td>
<td>1.28</td>
<td>1.17</td>
<td>.61</td>
<td>1.12</td>
<td>.59</td>
<td>-.49</td>
<td>-.61</td>
<td>-.44</td>
<td>.63</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>51</td>
<td>.95</td>
<td>.86</td>
<td>1.0</td>
<td>.70</td>
<td>.88</td>
<td>.72</td>
<td>-.66</td>
<td>-.75</td>
<td>-.54</td>
<td>.67</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notation: FA=Fixed Assets, CRE=Loan, PORT=Long Term Investment, TR=Net Treasury Assets, DEDE=Demand Deposit, TEDE=Term Deposit, SADE=Save Deposit

Remarks: (1) The F statistic tests the null hypothesis $H_0^3: |a_t| = |a_t| = _2t$ $\forall t \in [1971,1981]$ (Regulation hypothesis).

- The F statistic testing the null hypothesis $H_0^1: a_t = _2t$ $\forall [1971,1981]$ cannot be computed because of the constraint imposed on the parameters. (Taxation hypothesis).

- The F statistic testing the null hypotheses $H_0^2: a_t(74-81) = a_t(71-73)$ is equal to 7.99 and has p-value of .005 (inflation hypothesis).
Table 3b: Estimates and statistical significance (t-statistics) of the constrained cross-sectional regression (equation 5) Tax scalar of 3.0

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>R^2</th>
<th>FA</th>
<th>R^2</th>
<th>CRE</th>
<th>PORT</th>
<th>TR</th>
<th>DEDE</th>
<th>TEDE</th>
<th>SADE</th>
<th>F-TEST(H_0^3)</th>
<th>p-val (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>47</td>
<td>.86</td>
<td>1.9</td>
<td>.94</td>
<td>.33</td>
<td>.25</td>
<td>.37</td>
<td>-.29</td>
<td>-.15</td>
<td>-.70</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
<td>3.4</td>
<td>3.7</td>
<td>5.4</td>
<td>-1.9</td>
<td>-9.6</td>
<td>-1.5</td>
<td>.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>47</td>
<td>.84</td>
<td>1.3</td>
<td>1.09</td>
<td>.52</td>
<td>.38</td>
<td>.38</td>
<td>-.38</td>
<td>-.37</td>
<td>-1.03</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.09</td>
<td>4.7</td>
<td>4.06</td>
<td>5.22</td>
<td>-2.4</td>
<td>-1.6</td>
<td>-2.1</td>
<td>.995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>52</td>
<td>.94</td>
<td>.91</td>
<td>1.14</td>
<td>.51</td>
<td>.36</td>
<td>.39</td>
<td>-.47</td>
<td>-.39</td>
<td>-.63</td>
<td>.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td>17.4</td>
<td>9.7</td>
<td>7.7</td>
<td>8.4</td>
<td>-4.4</td>
<td>-4.1</td>
<td>-2.2</td>
<td>.47</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>50</td>
<td>.94</td>
<td>.54</td>
<td>.86</td>
<td>.35</td>
<td>.26</td>
<td>.30</td>
<td>-.26</td>
<td>-.39</td>
<td>-.50</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td>17.2</td>
<td>8.9</td>
<td>7.3</td>
<td>7.3</td>
<td>-2.7</td>
<td>-3.4</td>
<td>-1.6</td>
<td>.71</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>50</td>
<td>.93</td>
<td>.34</td>
<td>.82</td>
<td>.29</td>
<td>.22</td>
<td>.25</td>
<td>-.15</td>
<td>-.30</td>
<td>-.59</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>12.6</td>
<td>6.1</td>
<td>4.7</td>
<td>6.6</td>
<td>-1.2</td>
<td>-2.3</td>
<td>-1.7</td>
<td>.39</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>52</td>
<td>.95</td>
<td>1</td>
<td>.8</td>
<td>.23</td>
<td>.20</td>
<td>.23</td>
<td>-.18</td>
<td>-.24</td>
<td>-.37</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td>13.4</td>
<td>5.5</td>
<td>5.4</td>
<td>5.7</td>
<td>-1.9</td>
<td>-2.4</td>
<td>-1.6</td>
<td>.61</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>52</td>
<td>.95</td>
<td>.77</td>
<td>.87</td>
<td>.26</td>
<td>.26</td>
<td>.28</td>
<td>-.24</td>
<td>-.25</td>
<td>-.39</td>
<td>.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>14.2</td>
<td>5.8</td>
<td>6.9</td>
<td>7</td>
<td>-2.6</td>
<td>-2.8</td>
<td>-1.8</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>51</td>
<td>.94</td>
<td>.65</td>
<td>1.49</td>
<td>.45</td>
<td>.56</td>
<td>.42</td>
<td>-.44</td>
<td>-.60</td>
<td>-.002</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.8</td>
<td>13.3</td>
<td>5.6</td>
<td>8.3</td>
<td>5.6</td>
<td>-3.1</td>
<td>-5.4</td>
<td>-.006</td>
<td>.86</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>53</td>
<td>.95</td>
<td>1.46</td>
<td>1.45</td>
<td>.35</td>
<td>.57</td>
<td>.34</td>
<td>-.25</td>
<td>-.27</td>
<td>-.48</td>
<td>.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
<td>14</td>
<td>4.7</td>
<td>8.9</td>
<td>5.4</td>
<td>-1.6</td>
<td>-1.4</td>
<td>-1.2</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>52</td>
<td>.96</td>
<td>1.26</td>
<td>1.22</td>
<td>.28</td>
<td>.53</td>
<td>.26</td>
<td>-.17</td>
<td>-.21</td>
<td>-.42</td>
<td>.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td>12.8</td>
<td>4.2</td>
<td>9.8</td>
<td>4</td>
<td>-1.4</td>
<td>-1.3</td>
<td>-1.4</td>
<td>.40</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>51</td>
<td>.96</td>
<td>.88</td>
<td>1.1</td>
<td>.36</td>
<td>.43</td>
<td>.36</td>
<td>-.28</td>
<td>-.35</td>
<td>-.46</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>14.8</td>
<td>7.3</td>
<td>7.6</td>
<td>3.6</td>
<td>-2.9</td>
<td>-2.3</td>
<td>.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notation:
- FA=Fixed Assets, CRE=Loan, PORT=Long Term Investment, TR=Net Treasury Assets, DEDE=Demand Deposit, TEDE=Term Deposit, SADE=Savings Deposit

Remarks:
1. The F statistic tests the null hypothesis $H_0^3: |\alpha_1| = \alpha_{2t}^{4t}$ $V_{(1971,1981)}$ (Regulation hypothesis).
2. The F statistic testing the null hypothesis $H_0^1: \alpha_1 = \alpha_{2t}^{5t}$ $V_{(1971,1981)}$ cannot be computed because of the constraint imposed on the parameters (Taxation hypothesis).
3. The F statistic testing the null hypotheses $H_0^2: \alpha_1^3 (74-81) = \alpha_2^3 (71-73)$ is equal to 4.81 and has p-value of .003 (inflation hypothesis).
Table 4: SUR estimates and statistical significance (t-statistics) of the constrained cross-sectional regression (equation 6)

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>R</th>
<th>FA</th>
<th>FA</th>
<th>CRE</th>
<th>PORT</th>
<th>TR</th>
<th>DEDE</th>
<th>TEDE</th>
<th>SADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>47</td>
<td>.89</td>
<td>.89</td>
<td>.97</td>
<td>.68</td>
<td>.66</td>
<td>.69</td>
<td>-.72</td>
<td>-.66</td>
<td>-.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>18.5</td>
<td>9.9</td>
<td>10.3</td>
<td>9.8</td>
<td>6.7</td>
<td>5.7</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>47</td>
<td>1.3</td>
<td>.96</td>
<td>1.7</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>47</td>
<td>.89</td>
<td>1</td>
<td>1.6</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>50</td>
<td>.87</td>
<td>1.16</td>
<td>.85</td>
<td>.26</td>
<td>.27</td>
<td>.27</td>
<td>-.20</td>
<td>-.23</td>
<td>-.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
<td>28.7</td>
<td>15.8</td>
<td>16.2</td>
<td>19.2</td>
<td>7.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>50</td>
<td>1.5</td>
<td>.87</td>
<td>4.1</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>50</td>
<td>.81</td>
<td>.89</td>
<td>3.9</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>50</td>
<td>.42</td>
<td>.88</td>
<td>2.3</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>50</td>
<td>.81</td>
<td>1.1</td>
<td>1.8</td>
<td>30.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>50</td>
<td>1.04</td>
<td>1.1</td>
<td>2.6</td>
<td>32.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>50</td>
<td>1.12</td>
<td>1.06</td>
<td>3.8</td>
<td>35.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>50</td>
<td>.88</td>
<td>.90</td>
<td>3.8</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notation: FA=Fixed Assets, CRE=Loan, PORT=Long Term Investment, TR=Net Treasury Assets, DEDE=Demand Deposit, TEDE=Term Deposit, SADE=Savings Deposit

Remarks: The F statistic testing the null hypothesis $H_0: \left| \alpha_{1t} \right| = \alpha_{1t}$ is equal to .15 and has a p-value of .70 in the 1971-1973 subperiod. The F statistic and the p-value are equal to 6.09 and .014 in the 1974-1981 subperiod.
Appendix one: Balance sheet structure of total sample (% of total assets)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Fixed Assets</th>
<th>Loans</th>
<th>Money Market</th>
<th>Long term Investment</th>
<th>Liabilities</th>
<th>Money Market</th>
<th>Demand Deposit</th>
<th>Term Deposit</th>
<th>Savings Deposits</th>
<th>Long Term Bond</th>
<th>Equity Market</th>
<th>Tobin's Value</th>
<th>Number of banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>.15</td>
<td>.48</td>
<td>.32</td>
<td>.04</td>
<td>TRL</td>
<td>.19</td>
<td>.27</td>
<td>.18</td>
<td>.05</td>
<td>.12</td>
<td>.19</td>
<td>.22</td>
<td>1.45</td>
</tr>
<tr>
<td>CRE</td>
<td>.2</td>
<td>.44</td>
<td>.32</td>
<td>.03</td>
<td>DEDE</td>
<td>.22</td>
<td>.27</td>
<td>.15</td>
<td>.05</td>
<td>.11</td>
<td>.19</td>
<td>.22</td>
<td>1.42</td>
</tr>
<tr>
<td>TRA</td>
<td>.22</td>
<td>.44</td>
<td>.31</td>
<td>.03</td>
<td>TEDE</td>
<td>.25</td>
<td>.23</td>
<td>.13</td>
<td>.04</td>
<td>.15</td>
<td>.18</td>
<td>.2</td>
<td>1.48</td>
</tr>
<tr>
<td>LTI</td>
<td>.25</td>
<td>.41</td>
<td>.3</td>
<td>.03</td>
<td>SADE</td>
<td>.26</td>
<td>.21</td>
<td>.15</td>
<td>.04</td>
<td>.16</td>
<td>.17</td>
<td>.17</td>
<td>1.02</td>
</tr>
<tr>
<td>71</td>
<td>.27</td>
<td>.4</td>
<td>.3</td>
<td>.02</td>
<td>LTB</td>
<td>.24</td>
<td>.21</td>
<td>.15</td>
<td>.04</td>
<td>.18</td>
<td>.16</td>
<td>.17</td>
<td>1.11</td>
</tr>
<tr>
<td>72</td>
<td>.3</td>
<td>.4</td>
<td>.29</td>
<td>.02</td>
<td>E</td>
<td>.25</td>
<td>.19</td>
<td>.14</td>
<td>.04</td>
<td>.2</td>
<td>.16</td>
<td>.17</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>.33</td>
<td>.37</td>
<td>.28</td>
<td>.02</td>
<td>MV</td>
<td>.24</td>
<td>.18</td>
<td>.15</td>
<td>.04</td>
<td>.21</td>
<td>.17</td>
<td>.17</td>
<td>.9</td>
</tr>
<tr>
<td>74</td>
<td>.36</td>
<td>.41</td>
<td>.22</td>
<td>.02</td>
<td>Q</td>
<td>.37</td>
<td>.16</td>
<td>.08</td>
<td>.04</td>
<td>.16</td>
<td>.17</td>
<td>.21</td>
<td>1.02</td>
</tr>
<tr>
<td>75</td>
<td>.34</td>
<td>.39</td>
<td>.25</td>
<td>.01</td>
<td></td>
<td>.39</td>
<td>.17</td>
<td>.08</td>
<td>.04</td>
<td>.16</td>
<td>.16</td>
<td>.19</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>.33</td>
<td>.39</td>
<td>.25</td>
<td>.01</td>
<td></td>
<td>.41</td>
<td>.16</td>
<td>.09</td>
<td>.04</td>
<td>.14</td>
<td>.16</td>
<td>.19</td>
<td>1.02</td>
</tr>
<tr>
<td>77</td>
<td>.35</td>
<td>.39</td>
<td>.25</td>
<td>.01</td>
<td></td>
<td>.41</td>
<td>.17</td>
<td>.09</td>
<td>.04</td>
<td>.13</td>
<td>.16</td>
<td>.16</td>
<td>.9</td>
</tr>
</tbody>
</table>
INSEAD WORKING PAPERS SERIES

1986

86/01 Arnaud DE MEYER

"The R & D/Production interface".

86/02 Philippe A. NAERT

Marcel WEVERBERGE

and Guido VERSWIJVEL

"Subjective estimation in integrating
communication budget and allocation

86/03 Michael BRIMM

"Sponsorship and the diffusion of
organizational innovation: a preliminary view".

86/04 Spyros MAKRIDAKIS

and Michèle BIBON

"Confidence intervals: an empirical
investigation for the series in the M-
Competition".

86/05 Charles A. WYFLOPSZ

86/06 Francesco GIAVAZZI,

Jeff R. SREEN and

Charles A. WYFLOPSZ

"The real exchange rate and the fiscal

86/07 Douglas L. MACLACHLAN

and Spyros MAKRIDAKIS

86/08 José de la TORRE and

David H. NECKAR

"Forecasting political risks for
international operations", Second Draft:

86/09 Philippe C. RASPELACH

"Conceptualizing the strategic process in

86/10 R. MOENART,

Arnoud DE MEYER,

J. BARBE and

D. DESCROOYEESTER.

"Analysing the issues concerning
technological de-maturity".

86/11 Philippe A. NAERT

and Alain BULTEZ

"From "Lydiometry" to "Pinkhamization":
misspecifying advertising dynamics rarely
affects profitability".

86/12 Roger BETANCOURT

and David GAUTSCHI

"The economics of retail firms", Revised
April 1986.

86/13 S.P. ANDERSON

and Damien J. NEVVEN

"Spatial competition à la Cournot".

86/14 Charles WALDMAN

"Comparaison internationale des marges brutes

86/15 Mikkel TOMBAK and

Arnoud DE MEYER

"How the managerial attitudes of firms with
FMS differ from other manufacturing firms:

86/16 B. ESKBO and Hervig H. LANGE

"Les primes des offres publiques, la note
d'information et le marché des transferts de
contrôle des sociétés".

86/17 David B. JEMISON

"Strategic capability transfer in acquisition

86/18 James TEROUIL

and V. MALLERET

"Towards an operational definition of
services", 1986.

86/19 Rob R. WEITZ

"Nostradamus: a knowledge-based forecasting
advisor".

86/20 Albert CORHAT,

Gabriel RAVAVINI

and Pierre A. MICHEL

"The pricing of equity on the London stock

86/21 Albert CORHAT,

Gabriel A. RAVAVINI

and Pierre A. MICHEL

"Risk-premia seasonality in U.S. and European

86/22 Albert CORHAT,

Gabriel A. RAVAVINI

and Pierre A. MICHEL

"Seasonality in the risk-return relationships
some international evidence", July 1986.

86/23 Arnaud DE MEYER

"An exploratory study on the integration of

86/24 David GAUTSCHI

and Vithala R. RAO

"A methodology for specification and
aggregation in product concept testing", July 1986.

86/25 H. Peter CRAY

and Ingo WALTER

86/26 Barry EICHERGREEN

and Charles WYFLOPSZ

"The economic consequences of the Franc

86/27 Karel COOL

and Ingmar DIERICKX

"Negative risk-return relationships in
business strategy: paradox or truism?", October 1986.

86/28 Manfred KETS DE

VRIES and Danny MILLER

"Interpreting organizational texts.

86/29 Manfred KETS DE

VRIES

"Why follow the leader?".

86/30 Manfred KETS DE

VRIES

"The succession game: the real story.

86/31 Arnaud DE MEYER

Jinichiro NAKANE,

Jeffrey G. MILLER

and Kasra FERDOVS

Performance differences among strategic group
members", October 1986.

86/32 Karel COOL

and Dan SCRENDEL

"Flexibility: the next competitive battle", Revised Version: March 1987

86/15 Mihkel TOMBAK and

Arnoud DE MEYER

"Assessment of new product development

Measuring the market value of a bank, a primer*, November 1986.

The evolution of retailing: a suggested economic interpretation.

Capital flows liberalization and the EMS, a French perspective*, December 1986.

FMS as indicator of manufacturing strategy*, December 1986.

Value added tax and competition*, December 1986.

Prisoners of leadership*.

An empirical investigation of international asset pricing*, November 1986.

Managerial focal points in manufacturing strategy*, February 1987.

Customer loyalty as a construct in the marketing of banking services*, July 1986.

Equity pricing and stock market anomalies*, February 1987.

Leaders who can't manage*, February 1987.

Entrepreneurial activities of European MBAs*, March 1987.

The Janus Bead: learning from the superior and subordinate faces of the manager's job*, April 1987.

Multinational corporations as differentiated networks*, April 1987.

Managers' cognitive maps for upward and downward relationships*, June 1987.

The demand for retail products and the household production model: new views on complementarity and substitutability*.

87/26 Roger BETANCOURT and David GAUTSCHI "Demand complementarities, household production and retail assortments", July 1987.

87/27 Michael BURDA "Is there a capital shortage in Europe?", August 1987.

87/32 Arnoud DE MEYER "German, French and British manufacturing strategies less different than one thinks", September 1987.

87/33 Yves DOZ and Amy SRUEN "A process framework for analyzing cooperation between firms", September 1987.

87/40 Carmen MATUTES and Pierre REGIBEAU "Product compatibility and the scope of entry", November 1987

87/41 Gabriel HAVAVINI and Claude VIALLET "Seasonality, size premium and the relationship between the risk and the return of French common stocks", November 1987

87/43 Jean GABSZEVICZ and Jacques-P. THISSE "Location", December 1987

88/01 Michael LAVRENCE and Spyros MAKRIDAKIS "Factors affecting judgemental forecasts and confidence intervals", January 1988.

88/02 Spyros MAKRIDAKIS "Predicting recessions and other turning points", January 1988.

"Monopolistic competition, costs of adjustment and the behavior of European employment", September 1987.

"De-industrialize service for quality", March 1988 (88/03 Revised).

"Group decision support systems implement Bayesian rationality", September 1988.

Alain BULTEZ, Els GIJSBRECHTS, Philippe NAERT and Piet VANDEN ABEELE

"Asymmetric cannibalism between substitute items listed by retailers", September 1988.

Michael BURDA

Nathalie DIERKENS

Rob VEITZ and Arnoud DE MEYER

Rob VEITZ

Susan SCHNEIDER and Reinhard ANGELMAR

Manfred KETS DE VRIES

"Whatever happened to the philosopher-king: the leader’s addiction to power, September 1988.

Lars-Hendrik ROLLER and Mihkel M. TOMBAK

Peter BOSSAERTS and Pierre BILLION

Pierre HILLION

Wilfried VANHONACKER and Lydia PRICE

B. SINCLAIR-DESGAGNE and Mihkel M. TOMBAK

Martin KILDUFF

Michael BURDA

Lars-Hendrik ROLLER

Cynthia VAN BULLE, Theo VERMAELEN and Paul DE VOUTERS

Fernando NASCIMENTO and Wilfried R. VANHONACKER

Kasra FERDOVS

Arnoud DE MEYER and Kasra FERDOVS

"Quality up, technology down", October 1988.

Nathalie DIERKENS

"A discussion of exact measures of information asymmetry: the example of Myers and Majluf model or the importance of the asset structure of the firm", December 1988.

Paul S. ADLER and Kasra FERDOVS

Joyce K. BYRER and Tavfik JELASSI

Louis A. LE BLANC and Tavfik JELASSI

Beth H. JONES and Tavfik JELASSI

Kasra FERDOVS and Arnoud DE MEYER

Martin KILDUFF and Reinhard ANGELMAR

"Shared history or shared culture? The effects of time, culture, and performance on institutionalization in simulated organizations", January 1989.

Mihkel M. TOMBAK and B. SINCLAIR-DESGAGNE

Damien J. NEVEN

Arnoud DE MEYER and Helmut SCHUTTE

Damien NEVEN, Careen MAUTTES and Marcel CORSTJENS

"Brand proliferation and entry deterrence", February 1989.

Nathalie DIERKENS, Bruno GERARD and Pierre BILLION

"A market based approach to the valuation of the assets in place and the growth opportunities of the firm", December 1988.

89/12 Wilfried VANHONACKER "Estimating dynamic response models when the data are subject to different temporal aggregation", January 1989.

89/16 Wilfried VANHONACKER, Donald LEHMANN and Fareena SULTAN "Combining related and sparse data in linear regression models", February 1989.

89/19 Wilfried VANHONACKER, Donald LEHMANN and Fareena SULTAN "Combining related and sparse data in linear regression models", Revised March 1989.

89/22 Manfred KETS DE VRIES and Sydney PERZOW "What is the role of character in psychoanalysis?", April 1989.

89/28 Martin KILDUFF "The interpersonal structure of decision making: a social comparison approach to organisational choice", Revised April 1989.

