"CAPITAL CONTROLS AND INTERNATIONAL TRADE FINANCE"

by

Alberto GIOVANNINI* and
Jae Won PARK**

N° 90/09/EP/FIN

* Columbia University, CEPR and NBER

** Assistant Professor of Economics, INSEAD, Boulevard de Constance, Fontainebleau 77305, France

Printed at INSEAD, Fontainebleau, France
Capital Controls and International Trade Finance

Alberto Giovannini
Columbia University, CEPR and NBER

Jae Won Park
INSEAD

First Draft: August 1989
This Version: December 1989

ABSTRACT

This paper studies the effects of prohibiting individuals from holding foreign assets, and of allowing firms to trade in foreign assets only up to what is needed to finance export and import activities. Although firms can perform arbitrage between domestic and foreign financial markets, the distortions in asset markets are not fully arbitrag ed away but instead they are transmitted to domestic goods markets. The paper discusses the effects of shocks in foreign financial markets and in domestic fiscal policy. We show that the dynamics and steady states are crucially affected by capital controls.

We are grateful to Ingrid Werner, Michael Burda and seminar participants at Harvard University and the University of Rochester for comments. Alberto Giovannini was partially supported by a CEPR grant from the Ford Foundation and the Alfred P. Sloan Foundation.
1 Introduction

Controls on international trade in assets are a pervasive phenomenon in the world economy. Despite the free-trade philosophy of the institutions of the post-second-world war, like GATT, the IMF and the World Bank, controls on international capital flows have never been actively discouraged by international institutions, at least until very recently. Indeed, the first version of the IMF Articles of Agreement explicitly allowed the use of restrictions on international capital flows for the purpose of stemming temporary balance-of-payments crises.

Capital controls have been formally analyzed by many authors, but, unlike the analyses of restrictions on goods trade, there has never been a common general specification of the forms of controls of international capital flows. This absence of a common general specification is justified, in part, by the variety of types of restrictions imposed on international asset transactions. Hence among existing models, we find descriptions of dual exchange rates regimes (Adams and Greenwood (1985), Bhandari and Decaluwe (1987), Dornbusch (1986), Flood and Marion (1982, 1989) and Obstfeld (1986)), analyses of taxes on international borrowing and lending (Edwards and Ostry (1989) and van Wijnbergen (1989)), analyses of a quota on international borrowing (Greenwood and Kimbrough (1985)), and taxes on the acquisition of foreign means of payments (Stockman and Hernandez (1988)).

In this paper we discuss the effects of imposing different types of controls on different agents in the economy. Countries do not find it possible to prohibit all domestic residents—without discrimination—from trading in foreign assets, because firms need to access international financial markets to finance their international trade. In other words, trade finance is an integral part of trade in goods. Prohibiting trading firms from accessing international financial markets to finance international trade flows would end up disrupting exports and imports, and, possibly, jeopardizing the compet-

1 The project of elimination of physical, fiscal and technical barriers in Europe after 1992, however, explicitly mentions the removal of barriers to international capital flows as an important condition for the integration.

itiveness of national export industries in the world markets. We discuss the macro implications of a regime which prohibits individual consumers to trade in assets with the rest of the world, but allows firms to carry it out only up to what is needed to finance import and export activities. A simplified version of this model was first proposed by Giavazzi and Giovannini (1989), who argued that it best describes the controls used in European countries like France and Italy.

A constraint on the maximum holdings of foreign assets by firms is necessary because, in its absence, firms would take large positions in foreign assets by adjusting the size and maturity of trade credits whenever there is a discrepancy between the domestic interest rate and the world interest rate, causing large capital movements. Hence countries which restrict international financial transactions by individuals find it necessary to impose restrictions on firms' financing of international trade. This proposition is borne out in reality: according to the most recent IMF Annual Report on Exchange Arrangements and Exchange Restrictions (1988), most countries which have restrictions on payments for capital transactions impose restrictions on the proceeds from international trade. Out of 151 IMF member countries, 117 have both restrictions on international portfolio diversification and restrictions on the financing of international trade.

The regime we study raises a number of interesting questions. They include:

- The degree of insulation of domestic financial markets from foreign disturbances. In particular, we want to ask whether the ability of firms to carry out arbitrage between domestic and foreign financial markets renders the types of restrictions we study ineffective over some time horizon, and whether the insulation of domestic financial markets decreases or increases the volatility of domestic interest rates in response to foreign shocks.

3 Hansen (1961) and Einzig (1968) provide discussions of these techniques.
4 See page 544 of the Annual Report (1988). For example in Korea, as of December 31, 1987, the foreign exchange proceeds from exports are required to be surrendered to a foreign exchange bank at its posted customer rate.
• The impact of fiscal policies on domestic real interest rates and the current account. In particular, we are interested in the distortions arising from government financial policies when domestic and international financial markets are not perfectly integrated, as we described above.

The structure of this paper is as follows. Section 2 describes a general-equilibrium overlapping-generations model of a small open economy with capital controls and derives the dynamic equations to be satisfied in equilibrium. Section 3 discusses the steady state effects of capital controls on the domestic real interest rate and the foreign asset holdings. Using numerical simulations, sections 4 and 5 study the dynamic responses of the economy to a foreign interest rate shock and to a fiscal policy shock, respectively. Section 6 contains concluding remarks.

2 The Model

We study an economy where, besides the absence of trading opportunities between existing generations and future generations, there are no distortions. Since we are pursuing a positive analysis of controls, not a normative analysis, we ignore the distortions that might justify the imposition of capital controls. This allows us to isolate their macroeconomic effects.

The benchmark model is the standard overlapping-generations model of a small open economy studied, among others, by Blanchard (1985), Buit ter (1986), Frenkel and Razin (1987), Giovannini (1989) and Matsuyama (1987). Every period, a new cohort (consisting of many individuals) is born. Individuals face a given probability of survival, independent of age. Their utility is defined over consumption of two goods, a domestic good (good 1) and an import good (good 2). Every period, they receive an endowment of the domestic good, which they exchange with the rest of the world through trading firms. The assumption of a fixed endowment simplifies our analysis considerably, without affecting the

5See also Obstfeld (1989).
basic results in any important way. Consumers hold shares in the trading firms, and government bonds. The derivation of aggregate consumption functions—which follows standard treatments of this problem, like Frenkel and Razin (1987)—is relegated to Appendix A. The aggregate consumption functions are:

\[p_t C_{1t} = \alpha(1 - s_t)W_t \]

\[q_t^d C_{2t} = (1 - \alpha)(1 - s_t)W_t \]

\(p_t \) is the domestic price of good 1, expressed in terms of our numeraire—the world price of good 1. \(p_t \) can, in equilibrium, diverge from 1 because consumers do not have direct access to world goods markets. As we show below, the marginal costs and benefits of financial arbitrage are transmitted to goods prices. \(q_t^d \) is the domestic price of good 2, the imported good. \(W_t \) is total wealth of consumers. The marginal propensity to spend out of wealth, \((1 - s_t) \), is defined as follows:

\[(1 - s_t) = \sum_{j=0}^{\infty} \{ \beta^j \left[\beta^j \left(\frac{R_t}{R_{t+j}} \right) \left(\frac{p_t}{p_{t+j}} \right)^{\alpha} \left(\frac{q_t^d}{q_{t+j}^d} \right)^{1-\alpha} \right]^{\frac{j}{\theta}} \} \]

\(1/\theta \) is the elasticity of intertemporal substitution and \(R_t \) denotes the compounded present value factor from period zero up to period \(t \), i.e.,

\[R_t = \prod_{k=0}^{t-1} (1 + r_k)^{-1} \]

where \(r_t \) is the domestic real interest rate from period \(t \) to \(t + 1 \) (also expressed in terms of good 1). Note that \(R_t/R_{t+1} = 1 + r_t \). The components of the consumer's wealth, and their evolution are described by the three equations below:

\[W_t = H_t + A_t \]

\[H_t = p_t y - T_t + \left(\frac{\gamma}{1 + r_t} \right) H_{t+1} \]

\[A_t = p_t C_{1t} + q_t^d C_{2t} + T_t - p_t y + \frac{A_{t+1}}{1 + r_t} \]

6 An equivalent structure would have individuals endowed with a fixed number of man-hours, used by firms to produce the domestic good.
H_t represents human wealth at time t. It is the sum of the value of the endowment at domestic prices net of taxes T, plus next-period's human wealth discounted by the effective interest rate, which incorporates the probability of survival (see Appendix A). Equation (7) represents the evolution of aggregate financial wealth, A_t, which is equal to the present discounted value of next period's financial wealth, plus net dissaving at time t.

Domestic firms are not engaging in production of goods, but only in international trade. There exists a large number (normalized to 1) of identical domestic firms, acting competitively. This assumption allows us to apply the "representative firm" paradigm. International trade is financed both in the world and in the domestic capital markets. The firm's optimization problem is:

$$V_t = \max_{\{x_{1t}, x_{2t}\}} \sum_{t=0}^{\infty} \left(\frac{R_t}{R_0} \right) \left[(X_{1t} - F_t) + F_{t-1} \right] - p_t X_{1t}$$

$$-q_t X_{2t} + q_t^d X_{2t} - \frac{1}{2} \sum_{i=1}^{2} \delta_i (X_{it} - X_{i, t-1})^2$$

(8)

subject to:

$$F_t \leq \phi X_{1t}.$$ \hspace{1cm} (9)

$$F_t \geq \phi X_{1t}$$

$$0 < \phi \leq 1$$ \hspace{1cm} (10)

The first term in the square bracket on the right-hand side of equation (8) represents the cash flow from "cash" sales or purchases, equal to total exports or imports of good 1 minus the trade credits, F_t. The reason why we allow the domestic firm also to import good 1 is that, in this dynamic model, goods trade does not have to balance period-by-period since the country as a whole can finance, through trade credits, the excess of spending over income in world capital markets. In the steady state, however, good 1 can only be exported (see section 3 below). Trade credits
are 1-period assets that the firm buys from—or sells to—foreign residents, yielding the world rate of interest r^*. Hence the second term in the square brackets represents the liquidation value of trade credits from the previous period. The corresponding domestic cash flow from international trade in good 1 is represented by the third term in the bracket: the value of purchases from, or sales to, domestic residents, times the domestic price of the export good. Equations (9) and (10) represent the controls on capital flows imposed by the government. When the foreign interest rate exceeds the domestic interest rate, the firm is not allowed to purchase foreign assets in excess of a given fraction ϕ of its exports of good 1. When the foreign interest rate is lower than the domestic interest rate, the firm cannot sell foreign assets beyond the same fraction of its imports of good 1. If $r^*_f > r_t$, the firm will try to maximize foreign asset holdings, and, if $r^*_f < r_t$, it will try to minimize them. Therefore the constraints (9) and (10) always bind and the foreign asset holdings of the firm are equal to ϕX_{1t}. An additional assumption which is necessary to make these controls enforceable is that the firm cannot purchase good 1 from abroad on a cash basis to resell it there on credit, and vice versa. This prohibition to carry out this type of arbitrage activity is easily enforceable via border controls of import and export flows.\(^7\)

The firm is also engaged in the intermediation of the import good, good 2.\(^8\) although, to simplify the analysis, we assume that all trade in the import market is settled by cash. Our main qualitative results would be unaffected in a more complete model where also imports could be financed by trade credits at the world rate of interest, as long as the constraints on maximum trade credits in the import market differ from those in the export market.\(^9\) The firm buys the import good at the world price q, and sells it at home.
for \(q^d \) (where, as always, we use the world price of the export good as numeraire): hence the next two terms in the right-hand-side bracket of (8).

Finally, the last term of the firm's objective function represents costs of adjusting import and export flows. These costs stand for the delays and problems in negotiating sources of supply, and the rigidities induced by the time lags in international transport.\(^{10}\) Note that the opportunity cost of capital to the domestic firms (the discount factor in the firm's maximization problem) is the domestic interest rate. The assumption here is that the domestic firm is held by domestic residents only. If foreigners were allowed to hold shares of the domestic firm, they would require a rate of return equal to the world rate of interest. In this case the firm could arbitrage between domestic and foreign financial markets by changing its capital structure.\(^{11}\)

The first order conditions of (8) are:

\[
X_{1t} - X_{1t-1} \equiv \Delta X_{1t} = \frac{1}{\delta_1} \left[(1 - p_t) + \phi \left(\frac{r^*_t - r_t}{1 + r_t} \right) \right]
+ \frac{1}{1 + r_t} \Delta X_{1t+1} \tag{11}
\]

\[
X_{2t} - X_{2t-1} \equiv \Delta X_{2t} = \frac{1}{\delta_2} (q^d_t - q_t) + \frac{1}{1 + r_t} \Delta X_{2t+1} \tag{12}
\]

The first-order condition with respect to \(X_{2t} \), equation (12), says that the change in import flows depends on the profitability of imports trade (represented by the difference between the domestic and the world price of the import good), and the discounted future changes in imports. The smaller the costs of adjusting imports, \(i.e. \) the smaller \(\delta_2 \), the larger the response of import flows to price differences.\(^{12}\) The equation is a straightforward implication of linear-quadratic structure of the firm's maximization problem: in the absence of adjustment costs there would be no difference between the domestic and world price of the import good.

\(^{10}\)See Gagnon (1989) for evidence on the empirical magnitude of these costs.

\(^{11}\)For example, if foreign rates of interest were higher than domestic rates, the firm could raise large amounts of capital at home, and retire it abroad at the same time, thus effectively carrying out the arbitrage without constraints.

\(^{12}\)As \(\delta_2 \to 0 \) the incipient adjustment in import flows approaches infinity.
The first order condition with respect to X_{1t}, equation (11) shows that the profitability of the export trade is not only represented by the difference between the world price (equal to unity) and the domestic price of the export good, but also by the added gains from the export trade, represented by the profits from financial arbitrage in the trade credits market. Any extra sale of a unit of the export good allows to acquire ϕ units of foreign assets, which next period yield an arbitrage profit equal to $r^* - r$. The difference between equation (11) and equation (12) is that, even in the absence of adjustment costs in the export market, the domestic price of the export good does not necessarily equal its world price, but reflects the difference between foreign and domestic interest rates.

To highlight the role of capital controls, consider the hypothetical case where the constraint (9) and (10) is absent, or, equivalently, where the firm can freely choose the proportion between exports and foreign assets, ϕ. Under these circumstances, the firm would be able to take unbounded positions in foreign assets whenever there is a difference between foreign and domestic interest rates. In equilibrium foreign and domestic rates would have to be equal.

The government is assumed to engage in the following transactions: (i) purchases of the domestic good; (ii) collection of lump-sum taxes from individuals; (iii) management of the public debt, which is composed of B units of a bond with a face value of 1, paying the domestic interest rate. Government bonds are sold to domestic residents only. The government budget constraint is thus:

$$B_{t+1} = (1 + r_t)(B_t + p_t G_t - T_t)$$ (13)

In each period the equilibrium condition for domestic and import goods market can be described as follows.

$$C_{1t} = y - G_t - X_{1t}$$ (14)
$$C_{2t} = X_{2t}$$ (15)

13 The acquisition of foreign assets through trade credits is financed by borrowing in the domestic financial market the equivalent of the extra unit of the export good.

14 By the Modigliani–Miller theorem, firms are conducting the arbitrage for their shareholders, whose direct access to international financial markets is prohibited.
The equilibrium of asset markets is given by

\[A_t = B_t + V_t \] (16)

The value of financial asset holdings of individuals equals the amount of government debt plus the value of the firm.

Table 1 contains the full set of dynamic equations in the model which summarizes the dynamic behavior of aggregate variables in the economy. The balance of payments equilibrium condition in Table 1 is obtained by combining the budget constraints of individuals, the firm and the government.

The first equation in Table 1 represents the dynamics of capital flows. Since foreign assets at time \(t \) are equal to \(\phi X_{1t} \), and individuals have no access to the world capital markets, \(\Delta X_{1t} \) is proportional—through the constant \(\phi \)—to capital flows. In other words, all capital flows are represented by trade credits. The equation shows the determinants of capital flows in the presence of capital controls, and allows a comparison with the standard models. The “modern view” on international capital flows, following the work of Branson and Hill (1971), assumes that they arise from a sequence of stock equilibria. In those models (based on optimal portfolio diversification) desired asset stocks depend on the level of interest rates, hence capital flows depend on the first differences of interest rates. Only the imposition of adjustment costs in portfolios—typically left unexplained—can justify the presence of interest rate levels in capital flows equations.

Our model explicitly links these costs of adjusting international asset portfolios to the structure of transactions of the domestic private sector, and the constraints imposed by the government. We find that capital flows depend on the levels of domestic and foreign interest rates (with capital outflows increasing as foreign interest rates increase above domestic rates), on expected future capital flows, and on the difference between domestic and world prices of the export good.\(^{15}\)

\(^{15}\)This feature is shared by the model of Giavazzi and Giovannini (1989).
3 Steady-State Analysis: The Effects of Capital Controls.

The first order conditions of the firms' maximization problem have highlighted the role of adjustment costs. It is well known, however, that (given the structure of our model) these adjustment costs can only affect the short-run dynamic responses to shocks, but do not influence steady-state equilibria. The question then is whether in the steady state, when the price of the import good will be the same at home and abroad, a difference between domestic and foreign interest rates can be sustained by a difference between domestic and foreign prices of the export good.

The steady state equilibrium is described by the following equations:

- Firm's equilibrium conditions:
 \[p = 1 + \phi \left(\frac{r^* - r}{1 + r} \right) \]
 \[q^d = q \]

- Trade-credits constraint:
 \[F = \varphi X_1 \]

- Equilibrium condition in the market for good 1:
 \[(y - X_1 - G)p = \alpha (1 - s)(H + A) \]

- Equilibrium condition in the market for good 2:
 \[qX_2 = (1 - \alpha)(1 - s)(H + A) \]

- Human wealth:
 \[H = \frac{1 + r}{1 + r - \gamma} (py - T) \]

- Financial wealth:
 \[A = (1 + r^*)F + B \]
• Government budget constraint:

\[B = \frac{1+r}{r} (T - pG) \] \hspace{1cm} (24)

• Current-account equilibrium condition:

\[X_1 - qX_2 + r^* F = 0 \] \hspace{1cm} (25)

where

\[s = \gamma \beta^{1/2} (1 + r)^{\frac{1-s}{\theta}} \] \hspace{1cm} (26)

Equations (17) and (19) are both derived under the assumption that the constraint on trade credits binds in the steady state. Suppose that \(r < r^* \). The firm tries to sell more of the domestic good abroad to acquire more foreign assets. This raises the price of the domestic good at home. If, by contrast, \(r > r^* \), the firm tries to borrow from abroad by importing good 1. As equations (19) and (25) show, however, the steady-state current account equilibrium condition does not allow the firm to import good 1. If \(X_1 \) is negative, from equation (19) \(F \) is also negative and, since consumption of good 2 is always positive, equation (25) cannot hold. Since in equilibrium domestic residents need to sell good 1, the fall in \(p \) has to be such to induce the firm to balance the capital markets arbitrage losses with goods markets arbitrage gains. Hence the only point where the trade credit constraint is not binding is \(r = r^* \), which is, as we show below, a set of measure zero.

All the other equations are self-explanatory. Notice in particular that since the discount rate applied to future net-of-tax income in equation (22) takes into account the probability of dying, equations (22), (23) and (24) imply that government bonds affect, on net, total wealth.\(^{16}\) The value of the firm is the term \((1 + r^*) F\), that is, the value of its total asset holdings.\(^{17}\)

From now on, to simplify the exposition, we concentrate on the cases where \(\theta \leq 1 \) (which imply relatively high substitution

\(^{16}\)At every period \(t \) the firm owns the principal value of foreign assets accumulated from the previous period, \(F_{t-1} \), plus the interest accrued, \(r^* F_{t-1} \). Hence \((1 + r^*) F\) is the steady-state value of the firm's foreign asset holdings.

\(^{17}\)In addition to trade credits, the firm does not hold inventories or other types of investments.
between present and future consumption). Comparative steady-state analysis can be performed by studying the determinants of the domestic real interest rate and of foreign asset holdings by firms. We do so by collapsing the system (17) to (25) into two equations, describing, respectively, the current account equilibrium condition and the goods market equilibrium condition. The two corresponding schedules are plotted in Figure 1.

The current account equilibrium condition is obtained by substituting equations (21) (22) and (23) into (25):

\[
\left(\frac{1}{\phi} + r^*\right)F = (1 - \alpha)(1 - s(r))[\left(\frac{1 + r}{1 + r - \gamma}\right)(y - G)p(r, r^*) + (1 + r^*)F + \left(\frac{1 - \gamma}{1 + r - \gamma}\right)B]
\]

(27)

where \(p(r, r^*)\) and \(s(r)\) denote the functions in equations (17) and (26). The corresponding schedule in Figure 1—CC—is downward sloping. An increase in foreign assets increases income from abroad (both interest income and export income which is proportional to \(F\))—the left-hand side of equation (27)—but also increases the value of the firm and hence private wealth. As (27) shows, however, the increase in income from abroad exceeds the increase in import demand arising from higher private wealth. Thus an increase in \(F\) brings about a current account surplus. In order to reestablish equilibrium, the domestic real interest rate needs to fall, thereby raising human wealth, decreasing savings, and leading to higher demand for imports.

For goods market equilibrium, we concentrate only on the market for the “export” good, since, by Walras’s law, equilibrium in the current account implies that demand and supply for the import good are also equalized. Substituting equation (22) (23) and

18 This assumption is standard practice in theoretical work, even though it does not seem to be verified empirically: see Hall (1988). As we show below with numerical simulations, different values of \(\phi\) do not affect the dynamics and steady states significantly. Notice that with \(\theta < 1\) \(s\) is increasing in \(r\).

19 A sufficient condition for this result to occur is that \(\phi < 1\).

20 Strictly speaking, then, equilibrium in the market for both goods occurs only at the intersection of the CC and the GG curves.
(24) into (20), we obtain:

\[
(y - \frac{F}{\phi} - G)p(r, r^*) = \alpha(1 - s(r))[\left(\frac{1+r}{1+r-\gamma}\right)(y - G)p(r, r^*) + (1 + r^*)F + \left(\frac{1-\gamma}{1+r-\gamma}\right)B]
\]

(28)

An increase in foreign assets (proportional to an increase in exports) decreases the amount of the domestic good available for consumption, and raises the value of the firm and private wealth. The resulting excess demand for the export good is offset by a change in the domestic rate of interest, \(r \). An increase in \(r \) has three effects. On the demand side, it decreases the value of human wealth (the first term in brackets on the right-hand-side of (28)) directly, but also by lowering the equilibrium price of the consumers' endowment \(p \), and it increases the propensity to save. On the supply side it lowers the value of the domestic good. The net effect is ambiguous, and depends on parameters like the world rate of interest, the level of government spending, and the extent to which firms are allowed to arbitrage between domestic and foreign financial markets, \(\phi \). We assume that the effect on wealth and demand exceeds the supply effect: this occurs under all reasonable parameter combinations we studied. Under this assumption, the steady-state goods market equilibrium schedule is upward sloping.

To interpret the effects of capital controls we consider also the case where the firm is not subject to the constraint (19): it can freely trade in assets with the rest of the world, but private individuals cannot. International portfolio diversification by the firm ensures that the domestic interest rate equals the world rate, and therefore there are no steady state distortions in the goods markets. In this sense, prohibiting individuals from international assets trade does not distort any of their decisions.

The current account equilibrium condition is derived as follows. We know that the annuity value of individuals' assets should finance the excess of consumption over disposable endowment income:

\[
A = \left(\frac{1+r}{r}\right)[C_1 + qC_2 - (y - T)]
\]

(29)
Substituting from the GNP equation, we have:

\[A = \left(\frac{1 + r}{r} \right) [qX_2 - X_1 + T - G] \]

(30)

Asset markets equilibrium requires that \(A = B + V = \frac{1 + r}{r} (T - G) + (1 + r^*) F \). Hence,

\[qX_2 - X_1 = r \left(\frac{1 + r^*}{1 + r} \right) F \]

(31)

Equation (31) implies that the steady-state current account is in equilibrium if, and only if, \(r = r^* \): only in this case does the deficit in the balance of trade equal net income from the rest of the world, \(r^* F \).

To obtain the \(GG \) curve, we substitute equation (31) into the GDP equation (equilibrium condition in the market for the domestic good):

\[y = (1 - s(r)) \left[\frac{1 + r}{1 + r - \gamma} (y - G) + (1 + r^*) F + \frac{1 - \gamma}{1 + r - \gamma} B \right] + G - r \left(\frac{1 + r^*}{1 + r} \right) F \]

(32)

An increase in domestic real interest rate decreases wealth and spending. An increase in \(F \) restores equilibrium if \(s(1 + r) < 1 \) (a standard stability condition in these models: see Frenkel and Razin (1988)).

Figures 1 and 2 highlight an important feature of our model. The steady state domestic interest rate does not have to equal the foreign rate of interest (this result is further highlighted by the analysis of shocks performed in the following two sections). Although firms can perform arbitrage between the domestic and foreign financial markets, the domestic interest rate never reaches the world rate of interest, and the domestic financial markets are permanently isolated from the world financial markets. The intuition for this result is as follows. From equation (17) we know that firms can increase their foreign asset holdings whenever individual residents are induced to sell more of good 1 to the rest of the world. Individual residents are induced to consume less of
the good 1 by an increase in its price, \(p \). Hence the distortion in the asset markets cannot be fully arbitrag ed away, but is simply transmitted to the domestic goods market. The distortion in the asset markets—the interest rate differential—produces (other things equal) a larger distortion in the goods market the larger the proportion of exports that can be financed by trade credits, \(\phi \). Notice that, with \(\phi = 0 \), the firm is prevented from acquiring foreign assets and has to settle all transactions on a cash basis. In this case the prohibition to borrow and lend at the world rate of interest extended to all agents does not generate any distortion in the goods market.

In the next sections we discuss how these distortions are affected by shocks in the world rate of interest and fiscal policy shocks.

4 Foreign Interest-Rate Shocks

An increase in the foreign interest rate has ambiguous effects on the long run equilibrium. Consider the \(CC \) schedule first. A higher \(r^* \) increases income from abroad, but also increases spending, since the value of the firm and human wealth both go up. The net effect is not known a priori. Similarly, the shift in the \(GG \) schedule is ambiguous, since the value of the supply of good 1 increases with \(r^* \) (since \(p \) goes up), but demand goes up as well through the wealth effects mentioned above.

By contrast, Figure 3 shows that, in the absence of controls on trade credits, an increase in the foreign rate of interest shifts the two curves unambiguously. The vertical shift in \(CC \) is obvious. The \(GG \) curve also shifts upwards, since the increase in wealth due to higher foreign interest rates has to be matched by higher interest rates at home to decrease spending. Whether or not foreign asset holdings increase (which of the two curves has a larger vertical shift) depends on the offsetting income and substitution effects of the increase in \(r^* \).

We study the dynamic responses to a foreign interest rate shock using numerical simulations, since the dynamic system which describes the model's equilibrium over time is both “too large” and highly nonlinear. In the simulations we apply the algorithm of Fair
The algorithm works as follows. (i) An arbitrary terminal period \(T \) is selected (the number of periods in the simulation is \(T \)) and the values of the "jumping" variables from 1 to \(T \) are guessed. A jumping variable is a variable whose value depends on the future path of the economy. In our model, these variables are \(\Delta X_{1t+1}, \Delta X_{2t+1}, H_{t+1}, A_{t+1} \), and, since in general the propensity to save out of wealth \(s_t \) also follows a dynamic equation, \(s_{t+1}, p_{t+1} \) and \(q_{t+1}^d \). (ii) Using this initial guess of the future path of jumping variables, the model is solved forward from time 0 (the initial steady state) to \(T \), generating the values of all endogenous variables which include jumping variables. (iii) The initial guess of the path of the jumping variables is then compared to the one generated by step (ii) and updated if the absolute value of the difference between the two paths is not less than a prescribed convergence level. The model is solved again using this updated guess. (iv) Step (iii) is repeated until the convergence criterion is satisfied. (v) Once the updated and actual path of the jumping variables become close enough to satisfy the convergence criterion, the terminal period is extended to test the sensitivity of the solution to the length of the forecasting horizon.

We report simulation results conditional on the following parameters. The intertemporal elasticity of substitution equals 2 (i.e., \(\theta = .5 \)), the rate of time preference equals 2 percent per annum and the share of good 1 in the expenditure of individuals, \(\alpha \), equals 0.7. The value of \(\gamma \) is chosen such that the expected life span of individuals is 65 years, while \(\delta_1 \) and \(\delta_2 \) are equal to .01: hence the cost of adjustment of trade flows is 1 percent of the average square change in imports and exports. Finally, we assume that the government purchases are 15 percent of the total endowment, and that the government debt is kept at the constant level which equals one third of the total endowment. These parameters are chosen to resemble broadly the size of government purchases and government debt in actual economies.

21 This algorithm is implemented in a Gauss Program by W. and J. McKibbin, whom we thank for making it available to us.

22 These are the jumping variables at time \(t \). Loosely speaking, they are the expectations at time \(t \) of their realizations at \(t + 1 \), but, with perfect foresight, the coincide with the realizations.
Figures 4 and 5 report the dynamic responses of the domestic real interest rate and the current account, respectively, after a change in the foreign rate from 4 percent to 8 percent (in annual terms) in quarter 1. The parameter we vary is φ, which determines the “tightness” of controls on trade credits. If φ is large, the stock of foreign asset holdings at the initial steady state is high. Hence an increase in the foreign interest rate brings about a higher capital gain by the firm, reflected by a larger increase in the value of the firm. Higher wealth induces domestic residents to spend more. The incipient increase in spending generates an increase in the domestic rate of interest coupled with a current account deficit. The striking result in Figure 4 is that the domestic interest rate actually increases more than the foreign rate of interest, whenever φ is large. Furthermore, as we pointed out above, the new steady-state domestic rate of interest (2.3 percent) is still below the world rate (8 percent), and hardly changes from the initial steady state.

The figures also illustrate the effects of tighter capital controls. Restricting the access of domestic firms to world financial markets (lowering φ) limits the capital gains to firms originating from world interest rate fluctuations, and hence dampens the fluctuations of private wealth in response to r". Smaller fluctuations of private wealth induce smaller changes in the domestic rate of interest and the current account balance.

Figure 6 illustrates the effects of different magnitudes for the adjustment cost parameters δ. It shows the dynamic response of the domestic rate of interest to the shock in the foreign rate of interest, maintaining the parameter values listed above, with φ = .5. The adjustment cost parameters δ₁ = δ₂ are equal to .1 percent, 1 percent and 10 percent, respectively. The figure shows the familiar tradeoff between the volatility of quantities and the volatility of prices in dynamic models. After an exogenous shock, it is usually the case in dynamic models that, the more sluggish are quantity changes—induced by higher costs of adjustments faced by the firm—the larger are the price changes required to bring about an equilibrium. This phenomenon is confirmed by figure 6.

Figures 7 and 8 illustrate the role of different values of the intertemporal substitution parameter θ. Figure 7 plots the propen-
sity to consume out of wealth in response to the foreign interest rate shock with $\phi = .5$, and assuming, respectively, $\theta = 4$ and $\theta = .5$ (all the other parameters are unchanged). As equation (3) indicates, the propensity to spend depends on the full path of interest rates and relative prices. Figure 7 shows that—in equilibrium—the propensity to spend falls with low intertemporal substitution ($\theta = 4$) and slightly increases when $\theta = .5$.23 Interestingly, the equilibrium responses of wealth are opposite to those of the propensity to spend out of wealth,24 so that total spending $(1 - s_t)W_t$ ends up following roughly the same dynamics in both cases. Hence the equilibrium dynamic paths of the domestic rate of interest are little affected by different values of the elasticity of intertemporal substitution.

5 Fiscal Policy Shocks

We now turn to the analysis of a permanent increase in government expenditure, accompanied by an increase in taxes, and no change in government debt. Figures 9 and 10 show the steady-state changes of foreign assets and the domestic interest rate, by comparing the regime of capital controls with the case of perfect capital mobility. In the presence of capital controls (Figure 9), an increase in G accompanied by higher taxes decreases the expected value of after-tax endowment income, and spending. The current account equilibrium schedule of equation (27) shifts down and to the left. In the market for the domestic good, the contractionary effect of higher present and future taxes is balanced by the increase in demand (we assume that government spending is only on the domestic good). While the net effect on excess demand is ambiguous, we find it reasonable to assume that the demand for good 1 increases with the increase in government spending: hence

23Notice that this is the equilibrium response of the propensity to spend. On impact and ceteris paribus, however, an increase of the rate of interest would increase the propensity to spend when intertemporal substitution is low.

24The different behavior of equilibrium wealth is in part to be explained by the different behavior of the equilibrium domestic rate of interest, which in the case where $\theta = 4$ increases threefold from 6.02 to 18.20 percent, while in the case where $\theta = .5$ it increases by a factor between 5 and 6, from 2.44 to 12.05 percent. In the latter case wealth falls, while in the former it increases.
the GG schedule (in equation (28)) shifts up and to the left. The shift in the CC schedule is smaller, the smaller the value of ϕ: the decrease in imports associated with higher G has to be matched by a decrease in exports and foreign interest income. When ϕ is small, a small decrease in F corresponds to a large decrease in exports, hence the equilibrium leftward shift in CC has to be small. The smaller is the shift in CC relative to that of GG, the larger is the increase in the domestic interest rate. In general, however, the steady-state change in the real rate of interest is ambiguous. Figure 10 illustrates, for comparison, the case of perfect international capital mobility. In this case, since the real interest rate is pegged at the world level, the required crowding out of private spending can only occur through cumulative current account deficits.

The dynamic responses of the system are reported in figures 11 and 12 (which plot the real interest rate and of the current account, respectively). In the simulations, we assume that the foreign rate of interest is equal to 4 percent and government spending increases permanently from 15 percent of GDP to 16 percent of GDP. The figures illustrate our previous argument: the nature of crowding out of private spending depends on the tightness of capital controls. When ϕ equals only to 0.1, the fiscal expansion is accompanied by an increase in the domestic real interest rate both in the short run and in the long run. The worsening of the current account is in this case relatively small. By contrast, when ϕ is large most of the adjustment occurs through the current account: the real rate of interest decreases in the short run due to the negative wealth effects of the large current account deficits, but does not change significantly in the steady state.

6 Concluding Remarks

This paper has studied the effects of prohibiting private families from trade in assets with the rest of the world, and of allowing firms to borrow and lend at the world rate of interest, but only to finance their own international trade activity. These restrictions on the volume of financial transactions, that occur via the financing of foreign trade, differ from those studied in the literature,
which concentrate on taxing international interest payments or on restricting exogenously the stocks of foreign assets or, finally, on taxing the acquisition of foreign means of payments.

Our finding is that the distortions in the financial markets are transmitted by firms to the goods markets. The extent of this spillover depends in an important way on the "tightness" of capital controls. Furthermore, although firms can always carry out—at least to some extent—arbitrage between domestic and foreign financial markets, capital controls remain effective even in the long run. This occurs because there is always a "cost" of financial arbitrage, represented by the scarcity of domestic goods available for export when foreign interest rates are higher than the domestic ones, or by the limited size of the domestic market for imports, when foreign interest rates are lower than the domestic ones.

Controls on international trade credits do not necessarily isolate, in the short run, domestic interest rates from foreign financial disturbances: increases in foreign rates of interest can give rise to large fluctuations of domestic interest rates whenever they affect significantly the present discounted value of trading firms' profits. This occurs when controls on trade credits are relatively "loose", and as a results firms' foreign asset holdings are large. Finally, we find that the effects of fiscal expansions on the current account and interest rates are also crucially affected by these controls. The tighter are the controls on trade credits, the larger are the (positive) effects of a fiscal expansion on domestic rates of interest rates, and symmetrically, the smaller are its effects on the current account.
Appendix A Individual Consumption and its Aggregation

Each period a cohort of a large number of individuals is born and every individual receives y units of good 1, the domestic good, independently of his age. We assume that a newly born individual has no financial wealth.

Let $c_{i,v,s}$ denote the level of consumption of good i in period v of an individual who was born in period s ($v \geq s$). Assume that in period t an individual who was born in period s ($t \geq s$) has the following utility function over his current and future consumption

$$
\frac{1}{1 - \theta} \sum_{v=t}^{\infty} \beta^{v-t}(c_{1,v,s}^{\alpha}c_{2,v,s}^{1-\alpha})^{1-\theta}
$$

(A.1)

where β denotes the subjective discount factor, θ is the reciprocal of the intertemporal elasticity of substitution and α represents the expenditure share of good 1, the domestic good.

Since we assume that each individual faces the constant probability of death, $(1 - \gamma)$ in each period, the probability, as of period t, that he will be alive and able to consume in period v is γ^{v-t}. Hence the expected utility is

$$
\frac{1}{1 - \theta} \sum_{v=t}^{\infty} (\gamma \beta)^{v-t}(c_{1,v,s}^{\alpha}c_{2,v,s}^{1-\alpha})^{1-\theta}
$$

(A.2)

Let R_t denote present value factor from period 0 to period t, i.e.,

$$
R_t = \prod_{k=0}^{t-1} (1 + r_k)^{-1}
$$

(A.3)

The budget constraint in period t for this individual is

$$
a_{t+1,s} = \frac{R_t}{\gamma R_{t+1}}(a_{t,s} + p_t y - t_t - p_t c_{1,t,s} - q_t^d c_{2,t,s})
$$

(A.4)

where $a_{t,s}$ denotes the value of financial asset at the beginning of period t. We assume there exist a number of competitive financial intermediaries which issue actuarial bonds in the economy. Individuals can lend to or borrow from these intermediaries and these
claims are cancelled upon the death of the borrowers or lenders. The large number of individuals and the fixed probability of death make this form of financial intermediation riskless. Therefore the effective interest rate faced by individuals is \(\frac{R_t}{\gamma R_{t+1}}\), i.e., \((1 + r_t)/\gamma\) which is higher than the market interest factor.

Under the standard transversality condition that

\[\lim_{t \to -\infty} \gamma^t R_t a_{t,s} = 0 \quad (A.5) \]

we can consolidate (A.4) as follows

\[
\sum_{\nu=1}^{\infty} \frac{\gamma^\nu R_\nu}{\gamma^t R_t} (p_\nu c_{1\nu,s} + q_\nu^d c_{2\nu,s}) = \sum_{\nu=1}^{\infty} \frac{\gamma^\nu R_\nu}{\gamma^t R_t} (p_\nu y - t_\nu) + a_{t,s} \equiv w_{t,s} \quad (A.6)
\]

where \(w_{t,s}\) is the total wealth, at the beginning of period \(t\), of an individual who was born in period \(s\).

Maximization of (A.2) subject to (A.6) yields

\[
p_t c_{1t,s} = \alpha(1 - s_t)w_{t,s} \quad (A.7)
\]
\[
q_t^d c_{2t,s} = (1 - \alpha)(1 - s_t)w_{t,s} \quad (A.8)
\]

where

\[
(1 - s_t)^{-1} = \sum_{j=0}^{\infty} (\gamma \beta)^j \left[\beta^j \left(\frac{R_t}{R_{t+j}} \right) \left(\frac{p_t}{p_{t+j}} \right)^o \left(\frac{q_t^d}{q_{t+j}^d} \right)^{1-o} \right]^{(1-s_t)^{-1}} \quad (A.9)
\]

Together with (A.6), equations (A.7) and (A.8) describe consumption and saving decision of an individual whose age is \((t - s)\) in period \(t\).

The size of population is normalized so that every cohort is born with \((1 - \gamma)\) individuals. Then, from the law of large numbers, at the beginning of period \(t\), \((1 - \gamma)\gamma^{t-s}\) individuals will be alive among those who were born in period \(s\). Therefore the size of the population is

\[
\sum_{s=-\infty}^{t} (1 - \gamma)\gamma^{t-s} = 1 \quad (A.10)
\]

Let \(C_{it}\) denote aggregate consumption of good \(i\) in period \(t\) which is the sum of consumption of individuals from all cohorts,
substituting (A.7) and (A.8) into (A.11), we can derive aggregate consumption function as follows

\[p_tC_{1t} = \alpha(1 - s_t)W_t \]

\[q_tC_{2t} = (1 - \alpha)(1 - s_t)W_t \]

where

\[W_t = H_t + A_t \]

\[H_t = \sum_{\nu=t}^{\infty} \frac{\gamma^\nu R_\nu}{R_t}(p_\nu y - t_\nu) \]

\[A_t = \sum_{s=-\infty}^{t} (1 - \gamma)\gamma^{t-s}a_{t,s} \]

where \(a_{t,t} = 0 \), i.e. individuals are born without financial wealth.

The evolution of aggregate human wealth can be derived from (A.15) by leading it by one period

\[H_t = p_t y - T_t + (\frac{\gamma}{1 + r_t})H_{t+1} \]

where \(T_t \) is aggregate tax payment which is equal to \(t_t \) since the size of total population is normalized to 1. Finally, the evolution of nonhuman wealth can be obtained by substituting (A.4) into (A.16)

\[A_t = p_tC_{1t} + q_tC_{2t} + T_t - p_t y + \frac{A_{t+1}}{1 + r_t} \]
References

Table 1: The Dynamic Equations in the Model

- Firm's Equilibrium Conditions:
 \[X_{1t} - X_{1t-1} \equiv \Delta X_{1t} = \frac{1}{\delta_1} \left[(1 - p_t) + \phi\left(\frac{r^*_t - r_t}{1 + r_t}\right) \right] + \frac{1}{1 + r_t} \Delta X_{1t+1} \]
 \[X_{2t} - X_{2t-1} \equiv \Delta X_{2t} = \frac{1}{\delta_2} (q^d_t - q_t) + \frac{1}{1 + r_t} \Delta X_{2t+1} \]

- Goods Market Equilibrium Conditions:
 \[(y - X_{1t} - G_t)p_t = \alpha(1 - s_t)(H_t + A_t) \]
 \[q^d_t X_{2t} = (1 - \alpha)(1 - s_t)(H_t + A_t) \]

- Evolution of Human Wealth:
 \[H_t = p_t y - T_t + \left(\frac{\gamma}{1 + r_t}\right) H_{t+1} \]

- Evolution of Financial Wealth:
 \[A_t = (q^d_t X_{2t} - p_t X_{1t}) + (T_t - p_t G_t) + \frac{A_{t+1}}{1 + r_t} \]

- Government Budget Constraint:
 \[B_{t+1} = (1 + r_t)(B_t + p_t G_t - T_t) \]

- Balance of Payments Equilibrium Condition:
 \[X_{1t} - q_t X_{2t} + r^*_t F_{t-1} = \Delta F_t + \frac{1}{2} \sum_{i=1}^{2} \delta_i \Delta X^2_{it} \]

- Trade-Credits Constraint:
 \[F_t = \phi X_{1t} \]
(Capital Controls)
FIGURE 3

(Capital Mobility)
FIGURE 4
Domestic Real Interest Rate
Effects of an Increase in the Foreign Interest Rate

percent per annum

-4
-2
0
2
4
6
8
10
12
14
16
18
20

Quarter

phi=.9
phi=.5
phi=.1
FIGURE 5
Current Account Effects of an Increase in the Foreign Interest Rate

Quarter

percent of GDP

phi = .1

phi = .5

phi = .9
FIGURE 6
Domestic Interest Rate
The Role of Adjustment Costs in Trade

percent per annum

Quarter

delta = 10%
delta = 1%
delta = 0.1%
FIGURE 7
Propensity to Spend out of Wealth
The Role of Intertemporal Substitution

theta = 4

theta = 0.5
FIGURE 8
Total Spending
The Role of Intertemporal Substitution

percent of GDP

Quarter

The Role of Intertemporal Substitution

θ = .5

θ = 4

Quarter

87
86
85
84
83
FIGURE 9

FIGURE 10

(Capital Controls) (Capital Mobility)
FIGURE 11
Domestic Real Interest Rate
Effects of an Increase in Government Expenditure

phi = .1

phi = .5

phi = .9

percent per annum

Quarter
FIGURE 12

Current Account
Effects of an Increase in Government Expenditure

<table>
<thead>
<tr>
<th>Quarter</th>
<th>phi=.1</th>
<th>phi=.5</th>
<th>phi=.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td>4</td>
<td>-0.002</td>
<td>-0.004</td>
<td>-0.006</td>
</tr>
<tr>
<td>5</td>
<td>-0.003</td>
<td>-0.006</td>
<td>-0.008</td>
</tr>
<tr>
<td>6</td>
<td>-0.004</td>
<td>-0.008</td>
<td>-0.01</td>
</tr>
<tr>
<td>7</td>
<td>-0.005</td>
<td>-0.01</td>
<td>-0.012</td>
</tr>
<tr>
<td>8</td>
<td>-0.006</td>
<td>-0.012</td>
<td>-0.014</td>
</tr>
<tr>
<td>9</td>
<td>-0.007</td>
<td>-0.014</td>
<td>-0.016</td>
</tr>
<tr>
<td>10</td>
<td>-0.008</td>
<td>-0.016</td>
<td>-0.018</td>
</tr>
<tr>
<td>11</td>
<td>-0.009</td>
<td>-0.018</td>
<td>-0.02</td>
</tr>
<tr>
<td>12</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

percent of GNP vs. Quarter
INSEAD WORKING PAPERS SERIES

1986

86/01 Arnoud DE MEYER
"The R & D/production interface".

86/02 Philippe A. MAERT
Marcel VEYERDERCHE
and Guido VERSVEL

86/03 Michael BRICM
"Sponsorship and the diffusion of organizational innovations: a preliminary view".

86/04 Spyros MAKIDAKIS
and Michèle BIBON
"Confidence intervals: an empirical investigation for the series in the W. Competition".

86/05 Charles A. VIFLOSZ

86/06 Francesco GIAVASSI,
Jeff R. SBEEN and
Charles A. VIFLOSZ

86/07 Douglas L. MacLACHLAN
and Spyros MAKIDAKIS

86/08 José de la TORRE
and David A. HECKEA

86/09 Philippe C. RASPESLACH

86/10 R. HOCKART,
Arnoud DE MEYER,
J. BARBE and
D. DESCROOIJESTER.
"Analysing the issues concerning technological dematurity".

86/11 Philippe A. MAERT
and Alain BULTEZ
"From "Lydimetry" to "Pinkhamitication": misspecifying advertising dynamics rarely affects profitability".

86/12 Roger BETANCOURT
and David GAUTSCHI
"The economics of retail firms", Revised April 1986.

86/13 S.P. ANDERSON
and Dawi J. NEVEN
"Spatial competition à la Cournot".

86/14 Charles VALTMAN

86/15 Mikkel TOUMAAK
and Arnoud DE MEYER
"How the managerial attitudes of firms with FMS differ from other manufacturing firms: survey results", June 1986.

86/16 B. Espen ECKBO
and Hervig R. LANCOVA
"Les primes des offres publiques, la note d'information et le marché des transferts de contrôle des sociétés".

86/17 David B. JEMISON

86/18 James THIEL
and V. HALLERET
"Towards an operational definition of services", 1986.

86/19 Rob R. VERITZ
"Nostradamus: a knowledge-based forecasting advisor".

86/20 Albert CORHAY,
Gabriel BAVAIN and
Pierre A. MICHEL

86/21 Albert CORHAY,
Gabriel A. BAVAIN and
Pierre A. MICHEL

86/22 Albert CORHAY,
Gabriel A. BAVAIN and
Pierre A. MICHEL

86/23 Arnoud DE MEYER

86/24 David GAUTSCHI
and Vithala R. RAO

86/25 M. Peter CRAY
and Ingo WALTER

86/26 Barry EICHERGREEN
and Charles VIFLOSZ

86/27 Karel COOL
and Ingenar DIERICKX
"Negative risk-return relationships in business strategy: paradox or truism?", October 1986.

86/28 Manfred KETS DE VRIES and Danny MILLER

86/29 Manfred KETS DE VRIES
"Who follows the leader?".

86/30 Manfred KETS DE VRIES
"The succession game: the real story.

86/31 Arnoud DE MEYER
"Flexibility: the next competitive battle", October 1986.

86/32 Karel COOL
"Flexibility: the next competitive battle", Revised Version March 1987

86/33 David CAUFSCHI
and Vithal R. RAO
"Interpreting organizational texts.
1987

87/01 Manfred KETS DE VRIES

"Prisoners of leadership".

87/02 Claude VIALLET

87/03 David GAUTSCHI and Vithala RAO

87/04 Sumantra GHOSHAL and Christopher BARTLETT

87/05 Arnoud DE MEYER and Kasra PERDOVS

87/06 Arun K. JAIN, Christian PINSON and Naresh K. MALHOTRA

"Customer loyalty as a construct in the marketing of banking services", July 1986.

87/07 Roll BAHZ and Gabriel HAVANINT

87/08 Manfred KETS DE VRIES

"Leaders who can't manage", February 1987.

87/09 Lister VICKERY, Mark PILKINGTON and Paul READ

"Entrepreneurial activities of European MBAs", March 1987.

87/10 André LAURENT

"A cultural view of organizational change", March 1987

87/11 Robert FIDES and Spyros MAKRIDAKIS

87/12 Fernando BARTOLOME and André LAURENT

87/13 Sumantra GHOSHAL and Mitin MOHRIA

87/14 Landis GABEL

87/15 Spyros MAKRIDAKIS

87/16 Susan SCHNEIDER and Roger DUNBAR

87/17 André LAURENT and Fernando BARTOLOME

87/18 Reinhard ANGRUP and Christoph LIEBSCHER

87/19 David BEGG and Charles VYPLOSZ

87/20 Spyros MAKRIDAKIS

87/21 Susan SCHNEIDER

87/22 Susan SCHNEIDER

87/23 Roger BÉTAUCOURT and David GAUTSCHI

"The demand for retail products and the household production model: new views on complementarity and substitutability".
87/24 C.B. DERR and André LAURENT

87/25 A. K. JAIN, N. K. MALHOTRA and Christian PINSON

87/26 Roger BETANCOURT and David GAUTSCHI

87/27 Michael BURDA
"Is there a capital shortage in Europe?", August 1987.

87/28 Gabriel HAVAVINI

87/29 Susan SCHNEIDER and Paul SHRIVASTAVA

87/30 Jonathan HAMILTON, V. Bentley MACLEOD and J. P. THISSE
"Spatial competition and the Core", August 1987.

87/31 Martine OUINZII and J. P. THISSE

87/32 Kasra FERDOVS and Arnoud DE MEYER
"German, French and British manufacturing strategies less different than one thinks", September 1987.

87/33 Yves DOZ and Amy SHUEN

87/34 P. J. LEDERER and J. P. THISSE

87/35 Manfred KETS DE VRIES

87/36 Landis GABEL

87/37 Susan SCHNEIDER

87/38 Manfred KETS DE VRIES 1987

87/39 Carmen MATUTES and Pierre REGIREAU

87/40 Arnoud DE MEYER

87/41 Gabriel HAVAVINI and Claude VIALLET

87/42 Damien NEVEN and Jacques-P. THISSE
"Location", December 1987.

87/43 Jean CARSZEVICZ and Jacques-P. THISSE

87/44 Jonathan HAMILTON, Jacques-P. THISSE and Anita VESKAMP

87/45 Ingemar DIERICKX and Karel COOL

87/46 Ingemar DIERICKX and Karel COOL
"Predicting recessions and other turning points", January 1988.

87/47 Reinhard ANGELMAR

87/48 Charles VTFLOSZ

88/01 Michael LAWRENCE and Spyros MAKRIDAKIS

88/02 Spyros MAKRIDAKIS

88/03 Ingemar DIERICKX and Karel COOL

88/04 Susan SCHNEIDER

88/05 Charles VTFLOSZ

88/06 Reinhard ANGELMAR and Susan SCHNEIDER
88/17 Michael BURDA "Monopolistic competition, costs of adjustment and the behavior of European employment", September 1987.
88/22 Lars-Rendrik ROLLER "Proper Quadratic Functions with an Application to AT&T", May 1987 (Revised March 1988).
88/33 Mikhail M. TOMBAK "The Importance of Flexibility in Manufacturing", June 1988.
88/34 Mikhail M. TOMBAK "Flexibility: an Important Dimension in Manufacturing", June 1988.
88/36 Vikas TIMBERDA and Bruce BUCHANAN "A Predictive Test of the MBC Model that Controls for Non-stationarity", June 1988.
88/47 Alain BULTEZ, Els GIJSBRECHTS, Philippe NAERT and Piet VANDEN ABBELE

"Asymmetric cannibalism between substitute items listed by retailers", September 1988.

88/48 Michael BURDA

88/49 Nathalie DIERKENS

88/50 Rob WEITZ and Arnoud DE MEYER

88/51 Rob WEITZ

88/52 Susan SCHNEIDER and Reinhard ANGELMAR

88/53 Manfred KEYS DE VRIES

"Whatever happened to the philosopher-king: the leader's addiction to power, September 1988.

88/54 Lars-Hendrik RÖLLER and Mihkel M. TOMBAK

"Strategic choice of flexible production technologies and welfare implications", October 1988

88/55 Peter BOSSAERTS and Pierre HILLION

88/56 Pierre HILLION

88/57 Wilfried VANHONACKER and Lydia PRICE

88/58 B. SINCLAIR-DESAGNE and Mihkel M. TOMBAK

88/59 Martin KILDUFF

88/60 Michael BURDA

88/61 Lars-Hendrik RÖLLER

88/62 Cynthia VAN RULLE, Theo VERMAelen and Paul DE Wouters

88/63 Fernando NASCIMENTO and Vilfried R. VANHONACKER

88/64 Kasra FERDOVS

88/65 Arnoud DE MEYER and Kasra FERDOVS

"Quality up, technology down", October 1988.

88/66 Nathalie DIERKENS

"A discussion of asset measures of information asymmetry: the example of Myers and Majluf model or the importance of the asset structure of the firm", December 1988.

88/67 Paul S. ADLER and Kasra FERDOVS

89/01 Joyce K. BYRER and Tavfik JELASSI

89/02 Louis A. LE BLANC and Tavfik JELASSI

89/03 Beth B. JONES and Tavfik JELASSI

89/04 Kasra FERDOVS and Arnoud DE MEYER

89/05 Martin KILDUFF and Reinhard ANGELMAR

"Shared history or shared culture? The effects of time, culture, and performance on institutionalization in simulated organizations", January 1989.

89/06 Mihkel M. TOMBAK and B. SINCLAIR-DESAGNE

89/07 Damien J. NEVEN

89/08 Arnoud DE MEYER and Hellmut SCHÜTTE

89/09 Damien NEVEN, Careen NATUTES and Marcel CORSTIEMS

"Brand proliferation and entry deterrence", February 1989.

89/10 Nathalie DIERKENS, Bruno GERARD and Pierre HILLION

"A market based approach to the valuation of the assets in place and the growth opportunities of the firm", December 1988.
Marcel CORSTIENS, Carmen MATUTES and Damien NEVES

Manfred KETS DE VRIES and Christine MEAD

Damien NEVEN and Lars-Bendrik ROLLER

Jean DERMINE

Jean DERMINE

Spyros MAKRIDAKIS

Arnoud DE MEYER

Spyros MAKRIDAKIS

S. BALAKRISINAN and Mitchell KOZA

H. SCHUTTE

Wilfried VANHONACKER and Lydia PRICE

Taekvon KIM, Lars-Bendrik ROLLER and Mihkel TOMBAK

Lars-Bendrik ROLLER (EP, TM) and Mihkel TOMBAK

Manfred KETS DE VRIES, Daphna ZEVADI, Alain NOEL and Mihkel TOMBAK

Enver YUCESAN and Lee SCHRUBEN

Susan SCHNEIDER and Arnoud DE MEYER (All)

Arnoud DE MEYER (TM)

Enver YUCESAN and Lee SCHRUBEN

89/46

89/47

89/48

89/49

89/50

89/51

89/52

89/53

89/54

89/55

89/56

89/57

89/58

89/59

89/60

89/61

89/62

89/63

89/46

89/47

89/48

89/49

89/50

89/51

89/52

89/53

89/54

89/55

89/56

89/57

89/58

89/59

89/60

89/61

89/62

89/63

89/64

89/65

89/66

89/67

89/46

89/47

89/48

89/49

89/50

89/51

89/52

89/53

89/54

89/55

89/56

89/57

89/58

89/59

89/60

89/61

89/62

89/63

89/64

89/65

89/66

89/67

"Entry Encouragement", July 1989

"The global dimension in leadership and organisation: issues and controversies", April 1989

"European integration and trade flows", August 1989

"Some country control and mutual recognition", July 1989

"The specialisation of financial institutions, the EEC model", August 1989

"Sliding simulation: a new approach to time series forecasting", July 1989

"Shortening development cycle times: a manufacturer's perspective", August 1989

"Why combining works?", July 1989

"Organisation costs and a theory of joint ventures", September 1989

"Euro-Japanese cooperation in information technology", September 1989

"On the practical usefulness of meta-analysis results", September 1989

"Market growth and the diffusion of multiproduct technologies", September 1989

"Strategic aspects of flexible production technologies", October 1989

"Locus of control and entrepreneurship: a three-country comparative study", October 1989

"Simulation graphs for design and analysis of discrete event simulation models", October 1989

"Interpreting and responding to strategic issues: The impact of national culture", October 1989

"Technology strategy and international R & D operations", October 1989

"Equivalence of simulations: A graph theoretic approach", November 1989

"Complexity of simulation models: A graph theoretic approach", November 1989

"MARS: A mergers and acquisitions reasoning system", November 1989

"On the regulation of procurement bids", November 1989

"Market microstructure effects of government intervention in the foreign exchange market", December 1989
<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>90/01/TM</td>
<td>B. SINCLAIR-DESGAGNE</td>
<td>"Unavoidable Mechanisms", January 1990</td>
</tr>
<tr>
<td>1990</td>
<td>90/03/TM</td>
<td>Arnoud DE MEYER</td>
<td>"Management of Communication in International Research and Development", January 1990</td>
</tr>
<tr>
<td>1990</td>
<td>90/05/FIN/EP</td>
<td>Gabriel HAWAWINI and Bertrand JACQUILLAT</td>
<td>"European Equity Markets: Toward 1992 and Beyond", January 1990</td>
</tr>
<tr>
<td>1990</td>
<td>90/06/FIN/EP</td>
<td>Gabriel HAWAWINI and Eric RAJENDRA</td>
<td>"Integration of European Equity Markets: Implications of Structural Change for Key Market Participants to and Beyond 1992", January 1990</td>
</tr>
</tbody>
</table>