"PRUDENCE AND SUCCESS IN POLITICS"

by

Olivier CADOT*
and
Bernard SINCLAIR-DESGAGNE**

N° 90/86/EP/TM

* Assistant Professor of Economics, INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France.

** Assistant Professor of Decision Sciences, INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France.

Printed at INSEAD, Fontainebleau, France.
PRUDENCE AND SUCCESS IN POLITICS

by

Olivier Cadot and Bernard Sinclair-Desgagné*

INSEAD
Boulevard de Constance
77305 Fontainebleau Cedex
France

ABSTRACT

The paper proposes a theory of political inertia. The setup is a repeated game between an infinitely-lived electorate and finitely-lived politicians. The latter are endowed with a given reputation for competence. In one equilibrium, politicians seeking reelection exhibit an extreme form of caution, avoiding any risky involvement. Other equilibria exist, however, in which moderately cautious politicians take up those challenges that are not too informative about their competence.

* We are grateful to Jeff Banks, Avinash Dixit, Peter Kenen and Mihkel Tombak for helpful comments and suggestions. Any remaining errors and shortcomings are, however, our responsibility. We acknowledge financial support from INSEAD research grant # 2111R.
1. Introduction

"A prince, however, should be slow to believe and to act; [...] and should proceed moderately and with prudence ..."

Traditional wisdom considers prudence a necessary virtue in politics. Indeed, in a recent article on the electoral cycle and US foreign policy, Quandt (1986) observes that "if the prospects for an agreement do not look good during the third year, the tendency is to cut one's losses and to disengage the president from the diplomatic effort. Above all, the president does not want to be seen as responsible for a foreign policy failure. [...] The guidelines for the fourth year [...] are fairly simple. Try to avoid taking a position. Steer clear of new initiatives1."

The question of whether career concerns lead to under- or overinvolvement in risky endeavours has been, for the case of managers, a subject of interest to economists for some time. Holmstrom and Ricart I Costa (1986), for instance, use a model where managerial competence is initially unknown and where the principal (stockholders) and the agent (manager) have symmetric beliefs. The manager's actions allow all players to update their common beliefs about his competence, thus affecting his earnings

1 Quandt (1986) pp. 832-3; italics are ours.
profile. The private return from a risky venture to the agent is then, in general, not identical with its return to the firm. Whether the agent ends up under- or overinvesting in risky projects depends on his risk aversion, and the principal's problem is to design incentive contracts inducing optimal risk-taking. In politics, such contracts are not available, although a Constitution may be thought of as a form of contracting between voters and politicians. The appropriate framework for the type of problems we are investigating is rather a repeated agency game.

The players, in our model, are a set of politicians and a representative voter. All players are infinitely lived, but politicians cannot cumulate more than two terms in office, so that, as incumbents, they face a finite horizon. Repeated games with asymmetric horizons have been used in relation with the chain-store paradox (see among others Kreps and Wilson, 1982, Milgrom and Roberts, 1982, Fudenberg and Kreps, 1987) and with reputation for quality (Shapiro, 1982). However, only recently have their properties been studied systematically (see Fudenberg, Kreps and Maskin, 1990). General results in the tradition of the Folk theorem have been shown to hold, provided that players with short horizons

2 The effect of learning about a manager's ability on his earnings profile has also been analysed, both theoretically and empirically, in a different model, by Murphy (1986). Lambert (1986) considers a related agency problem where the principal must motivate the executive to spend effort to generate information about the profitability of risky projects.

3 The representative-voter assumption, also used by Rogoff (1990), is justified when one considers valence issues, i.e. issues over which all voters have identical preferences. For instance, one may think of foreign policy where bipartisan issues are plenty.
("short" players) have complete memory -- so that they can condition their strategies on the game history -- and can be punished within their ephemerous lifetime. Our game satisfies both properties. Politicians are players with long horizons but short periods of incumbency; complete memory is then, here, a natural assumption. Also, the two-term rule ensures that they can always be punished (by not being reelected) for deviating during a first term (there is no incentive problem for second-term actions since they are irrelevant for career concerns). Multiple equilibria are therefore the rule, and the usual problem of equilibrium selection arises.

Fudenberg and Levine (1989) have argued that, in an infinitely repeated simultaneous-move game, reputation effects may enable the long player to reach his preferred outcome. In a sequential-move game with incomplete information about the politicians' type, however, the outcomes we identify as plausible are perfect Bayesian equilibria that are best for politicians. These equilibria rely on self-enforcing punishments à la Friedman (1971, 1986), i.e. punishments forming an equilibrium for the repeated game. Friedman's version of the Folk theorem, although arguably less powerful than the more modern one due to Fudenberg and Maskin (1986), does not require mutually enforcing punishments. Such punishments would impose a high degree of rationality on each player. This seems implausible in a game where a long player faces an infinite sequence of short players, each of whom must participate in the scheme.
Our model features the existence of an *incumbency advantage*\(^4\). The voter is always willing to reelect an incumbent when she has not been able to update her beliefs about his competence. If the incumbent has the option not to take action, he is then willing to act only if doing so does not reduce his chances of being reelected. The incumbency advantage thus creates a bias towards caution in the incentive structure. More precisely, suppose that politicians are of two types, competent (c) or incompetent (u), this type being unknown to all players. Assume that the outcome \((y \in \mathbb{R})\) of a politician's actions is stochastic. Nature draws, in each period, a pair of distributions over outcomes \((F_c(y), F_u(y))\), where \(F_c(y)\) dominates \(F_u(y)\) in the sense of first-order stochastic dominance. Such a pair of distributions constitutes what we call an "opportunity for action", which the politician may take or reject. What matters for the politician is the ex-ante probability that the voter's posterior belief about his competence will not drop below a cutoff value where he is replaced. A politician enjoying an incumbency advantage will then reject all those opportunities for action for which the voter's posterior beliefs may, with positive probability, fall below the cutoff. We call such behaviour *strategic caution*. What is important here is not the riskiness of the action *per se*, but its *information content*. Let us stress that this result flows from the structure of incentives, not from any assumption about the politician's degree of risk-aversion.

\(^4\) See Calvert (1986) for a survey of other arguments supporting the existence of an incumbency advantage.
The paper is organized as follows. Section 2 lays out the model. Section 3 presents a perfect Bayesian equilibrium where caution is extreme, i.e. where politicians refuse any risky involvement during a first term. Section 4 then produces alternative equilibria where politicians act less cautiously, accepting those first-term actions that reveal little about their competence. Section 5 presents a simple parameterized example clarifying our notion of information content. Section 6 concludes.

2. The model

We consider an infinitely repeated game \(\Gamma \) of incomplete, but symmetric, information. At each stage of the game the players are a politician drawn from a large population and a representative voter. The representative-voter assumption is justified in our framework because the electoral issue on which we focus is the politician's competence, rather than the redistributive consequences of his choices. In the terminology of the political science literature, we consider a valence issue, i.e. an issue over which everyone agrees.

Let the population of politicians be indexed by \(N \), the set of natural numbers. At the beginning of each time period \(t \), a finite random sample \(K_t, 1 < |K_t| \), of candidates to the upcoming election is drawn from \(N \). \(K_t \) does not include the incumbent, if any. We shall suppose in fact that, by constitutional rule, no politician
can cumulate more than two mandates. Hence, each newly elected politician practically faces a finite horizon, while the voter considers an infinite one5.

Now, let \mathcal{H} denote the set of histories of Γ, \mathcal{H}_t the set of histories up to the start of the election at time t, and \mathcal{H}'_t the set of histories up to the outcome of the election at period t. The elements $H \in \mathcal{H}$, $H_t \in \mathcal{H}_t$, and $H'_t \in \mathcal{H}'_t$ are then random variables. We shall write h_t (h'_t) an instance of H_t (H'_t). This notation allows us to define two useful classes of functions:

First, the ascension times $r: \mathcal{H}'_t \times \mathbb{N} \to \{1,2,\ldots,t,t+1\}$, where $r(H'_t,j)$ is the time at which politician j is first elected, if any. By convention, if j is not elected at or before time t, $r(h'_t,j) = t+1$. If j is never elected, $r(h,j) = \infty$.

Second, the election results $\iota: \mathcal{H}'_t \to \mathbb{N}$, where $\iota(h'_t)$ is the elected (incumbent) politician for period t.

The following relations are easily verified:

$$r(h'_t,j) = t \quad \Rightarrow \quad j = \iota(h'_t) \quad \forall t$$

$$j = \iota(h'_t) \quad \Rightarrow \quad r(h'_t,j) = t \quad \text{or} \quad t-1.$$

Early in period t there is an election over the set of candidates K'_t, where $K'_t = K_t \cup \iota(H'_{t-1})$ if $r(H'_{t-1}, \iota(H'_{t-1})) = t-1$, and $K'_t = K_t$ otherwise (see figure 1). Let $\alpha_t = (\ldots, \alpha_{tj}, \ldots)$ be a probability distribution over K'_t: $\Sigma_j \alpha_{tj} = 1$ and $\forall t$, $\forall j \in K'_t$, $\alpha_{tj} \geq 0$. The number α_{tj} is the probability that the voter supports candidate j at time t (hence the probability that j gets elected at

5 Mello e Souza (1989) uses a similar framework in a different context.
t), when j is either an opposition candidate or the incumbent up for reelection. The vector function \(\alpha_t(H_j) \) is thus a policy for the voter at time \(t \); \(\alpha = (\alpha_1, \alpha_2(H_2), \ldots) \) constitutes a supergame strategy of the voter.

Each election is followed by an opportunity for action, that the elected politician can either take or refuse. In the first case the outcome is \(Y_t \), a function of two independent random variables: \(S_t \), a "dossier", or set of judgmental elements about the prospects of the action, drawn from a stationary distribution, and \(\epsilon_t \), a factor depending on the politician's competence. Formally,

\[
Y_t = Y(S_t, \epsilon_t)
\]

\[
\frac{\partial Y}{\partial S_t} > 0 \quad \frac{\partial Y}{\partial \epsilon_t} > 0
\]

A politician being either competent (c) or incompetent (u), \(\epsilon \) can be drawn either from distribution \(F_c \) (of density \(f_c \) with support \(\Omega_c \)) or from distribution \(F_u \) (of density \(f_u \) with support \(\Omega_u \)), where \(F_c \) dominates \(F_u \) in the first order. Each pair \([F_c,F_u]\) is indexed by a random vector \(A \) drawn in each period from a stationary distribution.

The realizations \(s_t \) of \(S \) at \(t \), and \(a_t \) of \(A \) at \(t \) are observed by the politician before he chooses to take action or not. He does not know \(\epsilon_t \) at this stage, however, but only at the end of the period if he decides to take action. If no action is taken by the

6 For example, \(A \) can be equal to \((a_1, a_2)\), so \(F_c(\epsilon_t) = F(\epsilon_t | a_1) \) and \(F_u(\epsilon_t) = F(\epsilon_t | a_2) \). See the proof of lemma 2 in the appendix.
politician in period t, no instance of ϵ_t can be observed. At the end of the period, that is before the next election, all the realizations that can possibly have occurred become common knowledge.

Now, according to himself and to the voter, a politician is competent with prior probability p. This parameter p is common knowledge and constant across all politicians. When ϵ_t is observed, however, beliefs about an incumbent j's competence are revised for next period according to Bayes's rule. Hence, at the end of period t the belief on the incumbent's competence becomes

$$p_{t+1,j}(H_{t+1}) = \begin{cases} \frac{pf_t^c}{pf_t^c + (1-p)f_t^u} & \text{if } \epsilon_t \text{ is observed} \\ p & \text{otherwise} \end{cases} \quad (2)$$

A newly elected politician thus faces a dilemma: should ϵ_t be observed or not?

Let D be the stationary support of S, and denote by $D_{tj} \subseteq D$ the set of "acceptable dossiers" for politician j at time t. Similarly, let T be the stationary support of A, and denote by $T_{tj} \subseteq T$ the set of "acceptable tests" for j at t. A policy for politician j at t is then
Equation (3) says that when politician j is the incumbent, β_{tj} is the product of the indicator functions of the sets D_{tj} and T_{tj}. One can write $\beta_{tj} = \beta_j(H',S_t,A_t)$, and a supergame strategy for politician j is then

$$\beta_j = (0, \ldots, \beta_{x(H,j),j}, \beta_{x(H,j),j+1}, 0, \ldots)$$

Let β be the vector of strategies of all politicians. Throughout the paper, we will consider symmetric equilibria in the sense that

$$\beta_{x(H,j),j} = \beta_{x(H,i),i}$$
$$\beta_{x(H,j),j+1} = \beta_{x(H,i),j+1}$$

$\forall i, j \in N$

Given (4) and (5), we can speak, by abuse of language, of "the politician's first (or second) term", meaning any incumbent's first or second term.

The voter's expected payoff given the politicians' strategy is finally given by

$$V(\alpha, \beta) = E \left[\sum_{t=1}^{\infty} \beta^t \beta_{x(H',S_t,A_t)} Y(S_t, \epsilon_t) \right]$$

(6)
where δ is the voter's discount factor. To maximize V, the voter can use reelection as an incentive for incumbents.

Politicians maximize their probability of being elected. After they win, they get what Rogoff (1990) pleasantly calls an "ego rent", i.e. a fixed utility bonus that we normalize to unity. Given the voter's strategy, a politician's expected payoff can then be written as

\[W_j(\alpha, \beta) = E \left[\rho^{r(H,j)-1} \left(1 + \rho a_{r(H,j)+1,j} \right) \right] \]

(7)

where ρ is a discount factor. In this model, politicians have no preferences over actions per se, hence no ideology. They would instead break indifference by picking the voter's preferred move, then exhibiting episodic sparks of statesmanship.

The description of the game is now complete. In the following section we will describe a "benchmark" perfect Bayesian equilibrium characterized by an extreme form of caution.

3. An equilibrium with extreme caution

Let us denote by \(D^* \) the set of actions having a non-negative expected value. Formally,

\[D^*(a_t) = \{ s_t \in D : E^{p_{ij}}(Y_t | s_t, a_t) \geq 0 \} \]

(8)

\footnote{This assumption is standard in the agency literature; see e.g. Holmstrom and Ricart I Costa (1986).}
Using the stationarity of the distributions of S_t and A_t, we can write

$$v(p_{tj}) = E^{P_{tj}}(I_{p_t}, Y_t)$$

where I_{p_t} is the indicator function of the set D^* defined in (8). Using this notation, let q be the probability threshold that satisfies:

$$v(q) = \frac{\delta}{1+\delta} v(p)$$

It is shown in the appendix that $v(.)$ is an increasing function; therefore, $q < p$.

We are now able to define a strategy for the voter in terms of the parameter q^8:

$$\alpha_{tj}(q) = \begin{cases}
0 & \text{if } (i) \ r(h_{t-1}', j) - t-1 \wedge p_{tj} < q \\
\frac{1}{|K_t|+1} & \text{if } (ii) \ j \in K_t \wedge p_{tj} > q \wedge r(h_{t-1}', i) = t-1 \\
1 & \text{if } (iii) \ r(h_{t-1}', j) - t-1 \wedge p_{tj} - q \\
\frac{1}{|K_t|} & \text{if } (iv) \ j \in K_t \wedge p_{tj} = q \wedge r(h_{t-1}', i) = t-1 \\
1 & \text{if } (v) \ r(h_{t-1}', j) - t-1 \wedge p_{tj} > q \\
\frac{1}{|K_t|} & \text{if } (vi) \ j \in K_t \wedge t-1 \\
0 & \text{if } (vii) \ j \in K_t \wedge r(h_{t-1}', i) - t-1 \wedge p_{tj} < q \\
\frac{1}{|K_t|} & \text{if } (viii) \ j \in K_t \wedge r(h_{t-2}', i) - t-2 \wedge i - 1(h_{t-1}').
\end{cases}$$

In words, if the voter's revised belief about the incumbent politician's competence has dropped below the cutoff value q (case (i)), the incumbent is replaced with probability one. The voter

8 Note that q is a well-defined mathematical entity and is not defined with reference to any equilibrium point of the game. This formulation of strategies owes a lot to the comments of Avinash Dixit.
then randomizes uniformly among $|K_t|$ opposition candidates (case (vii)). The same randomizing rule applies at time one (case (vi)) and after the end of an incumbent's second term (case (viii)). If the voter's belief about the incumbent's competence is, after one term, greater than q, the voter retains him with probability one (case (v)), assigning a probability of election equal to zero to all opposition candidates (case (ii)). If the voter's belief is exactly q, she uniformly randomizes between the incumbent and the opposition candidates (in number $11(d)$, assigning everyone a probability of reelection equal to $1/(|K_t|+1)$ (cases (iii) and (iv)).

Consider now the following strategy for politicians:

$$\beta_{tj} = \begin{cases} 1 & \text{if } r(h_{t-1}^t, j) = t-1 \land s_t \in D^* \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (12)

Proposition 1

The strategy combination $(\alpha(q), \beta)$, where q is defined in (10), $\alpha(q)$ in (11), and β in (12), is a perfect Bayesian equilibrium of Γ.

Proof

The proposition is proved by backward induction. After politician j has been reelected, i.e. at h_t^t, with $r(h_t^t, j) = t-1$ and $i(h_t^t) = j$, β_{tj} is optimal for him by assumption. For the voter at h_t with $r(h_{t-1}^t, j) = t-1$, two cases must be distinguished. If the incumbent has played according to (12), i.e. if $\beta_{t-1, j} = 0$, then p_{tj}
= p > q and the voter's best response is to reelect him; this, given B, yields expected payoff \((1/1-\delta^2)v(p)\), and it is easily checked that, given B, any deviation \(a' \neq a\) yields a lower payoff to the voter. If, on the other hand, the incumbent has deviated and \(p_{t+1} \neq p\), assuming again that future politicians will follow strategy B, reelecting the incumbent yields a payoff equal to \(v(p_{t+1}) + (\delta^2/1-\delta^2)v(p)\), while not reelecting him yields a payoff equal to \((\delta/1-\delta^2)v(p)\). One sees immediately that it is optimal to set

\[
\alpha_{t+1} = \begin{cases}
1 & \text{if } p_{t+1} > q \\
\frac{1}{|K_t|+1} & \text{if } p_{t+1} = q \\
0 & \text{if } p_{t+1} < q
\end{cases} \tag{13}
\]

Now, at \(t_{t+1}'\), with \(r(h_{t+1}',j) = t-1\), and given \(a, B_{t-1,j} = 0\) implies \(\alpha_{t+1} = 1\). Hence B is optimal. QED

This "benchmark equilibrium" exhibits an extreme form of caution: first-term politicians do nothing, thus preventing any reputation slippage. Because they are expected to behave optimally in their last term, they enjoy and "incumbency advantage" ensuring their reelection. Along the equilibrium path, incumbents are thus always reelected. Note that there exists in fact a continuum of Nash equilibria (corresponding to different q's in \([0,p)\)) that

9 We are using here the standard postulate that, whatever the history of the game (i.e., even if some players have deviated in the past), all players are expected to follow their equilibrium strategies in the future, and that each player is using this postulate to calculate expected payoffs down the game tree. For a discussion of this postulate, see Kreps and Wilson, 1982, p. 875.
yield the same outcome. However, only one of these, where \(q \) satisfies (10), is perfect.

Total inaction in the first mandate is an extreme result. In the next section we present other PBE's where politicians behave in a more plausible fashion. The intuition is the following: perfection implies that \(q < p \), so that some reputation slippage is tolerated by the voter in equilibrium; politicians can then act sometimes, without compromising their reelection.

4. Equilibria with moderate caution

In this section, we seek alternative PBE's of the game. Part 4.1 is in the spirit of the Folk theorem. Politicians use the inaction equilibrium of section 3 as a threat to force more tolerance from the voter for bad first-term outcomes. This allows them to take some weakly informative actions while maintaining a probability of reelection equal to unity. The interesting feature of this equilibrium is that it exists for any value of the voter's discount parameter in \((0,1)\).

In 4.2, we show that the single fact that politicians always break indifference by picking the voter's preferred move also forces a margin of tolerance for bad first-term outcomes. One can therefore construct equilibria where strategic caution is moderate without appealing to punishment strategies.
4.1 An equilibrium with punishments

In a version of the Folk theorem due to Friedman (1971), punishments are open-loop equilibria of the repeated game\(^{10}\). Similarly here, punishments consist in reversion to the equilibrium of proposition 1. Although these punishments do not constitute, properly speaking, an open-loop equilibrium (since strategies (11) and (12) are conditional on the game history), they do not condition on past deviations (they are like "defect always" in a repeated prisoner's dilemma). Hence, they are simple to construct and have a strong intuitive appeal since they are self-enforcing\(^{11}\).

Suppose that there exists a function \(q'\) such that

\[
v(q') + \delta E \sum_{t=1, t \text{ odd}} [\delta^{t-1} E (I_{D_t=\Lambda q_t} Y_t) + \delta^t v(p_{t+1}(H_{t+1})) - \frac{\delta}{1-\delta^2} v(p)] (14)
\]

where

\(^{10}\) Open-loop strategies allow no feedback from the game history.

\(^{11}\) One could also construct a "hybrid" equilibrium where the voter punishes any politician who deviates from a specified rule (designed to maximize the voter's gain), while being punished by all politicians if he failed to punish. The politicians' punishment consists in reverting to the equilibrium of proposition 1. An equilibrium constructed in this manner has the odd property that politicians are better-off on the punishment path (where they get a reelection probability equal to unity) than on the equilibrium path. The slightest amount of group rationality would then induce them to implement the punishment right away, thus reverting to the equilibrium of prop. 1.

We are grateful to Jeff Banks for pointing out to us the existence of this equilibrium.
\[T_t(q') = \{ a_t \in T : p_tj(a_t) > q' \text{ with prob. } 1 \} \]

(15)

It is shown in proposition 4 that \(q' < p \). \(T_t(q') \) is the set of opportunities for action such that the worst realization of \(\epsilon_t \) would not imply a drop of reputation at or below \(q \). It will turn out to indicate those actions whose information content is compatible with certain reelection. For instance, an action whose associated distributions have distinct supports cannot belong to \(T_t(q') \), for distinct supports imply that the worst updated belief would be \(p_{t+1,j} = 0 \) (if \(\epsilon_t \) fell in \(\Omega^n - \Omega^c \)).

Consider now the following strategies. For the voter,

\[
\alpha'_{tj} = \begin{cases}
\alpha_{tj}(q) & \text{if } \exists j, z < t : r(h'_{z-1}, j) = z-1 \land j \neq 1(h'_t) \\
\alpha_{tj}(q') & \text{otherwise}
\end{cases}
\]

(16)

where \(\alpha_{tj}(q) \) is defined by (11) and \(\alpha_{tj}(q') \) is defined in similar fashion. For politicians,

If \(\exists j, z < t : r(h'_{z-1}, j) = z-1 \land j \neq 1(h'_t) \) then

\[\beta'_{tj} = \beta_{tj} \]

Otherwise, then

\[
\beta'_{tj} = \begin{cases}
1 & \text{if } (i) \ s_t \in D^* \land a_t \in T_t(q') \land j \neq 1(h'_t) \\
0 & \text{otherwise}
\end{cases}
\]

(17)

In words, the politicians' trigger strategy consists of using all the margin for reputation-slippage to take valuable actions as long as all past incumbents have been reelected, while forever
reverting to the strategy of the "benchmark" equilibrium if one previous incumbent has been dismissed.

Proposition 2

\((\alpha', \beta')\) is a perfect Bayesian equilibrium of the game \(\Gamma\) for any \(\delta\) in \([0,1)\).

Proof

The proof is again by backward induction. At \(h_t',\) if \(r(h_t',j) = t-1\) and \(i(h_t') = j\), then \(\beta_{tj}'\) is optimal by assumption. At \(h_t\), with \(r(h_{t-1}',j) = t-1\), if \(\beta_{t-1,j} = 0\), then \(\alpha_{tj}(q')\) is optimal as in proposition 1. If \(\beta_{t-1,j} = 1\), then, given \(\beta'\), it can be easily checked that \(\alpha_{tj}(q')\) is a best response by definition of \(q'\). At \(h_{t-1}'\), with \(r(h_{t-1}',j) = t-1\), and given \(\alpha', \beta_{tj}'\) is optimal because it ensures reelection.

\(QED\)

Proposition 2 says that the incumbent politician is always reelected along the equilibrium path. Even though politicians do take some actions, they take actions that reveal just so little information that the voter's posterior beliefs can never drop below the reelection threshold. The existence of the threat (to revert to the equilibrium with extreme caution of section 3) increases the cost to the voter of firing an incumbent. Politicians are then allowed to be bolder in their first mandates. The presence of the threat, however, raises the voter's welfare in equilibrium.
Note that the equilibrium \((a', \beta')\) does not break down for low values of \(\delta\) because here a discounting period is not identical with a game period. A discounting period covers both the voter's move and the politician's move. A voter can be punished for a deviation within the same period, so that a lower value of the discount parameter does not necessarily reduce the effectiveness of punishments. It can be easily seen by inspection of (14) that, by construction of the function \(q'(\delta)\), \(a'\) remains a best response to \(\beta'\) even for \(\delta = 0\).

4.2 Equilibria without threats

Define \(q''\) by

\[
n(q'') = (1-\delta) E \sum_{t-1, t \text{ odd}} [\delta^{t-1}P(I_{D*} \cap T_t(q'') Y_t) + \delta^t V(P_{t+1}(H_{t+1}))]
\]

(18)

where

\[
T_t(q'') = \{a_t \in T : p_t(a_t) > q'' \text{ with prob. } 1\}
\]

(19)

Now consider the following strategies:

\[
a''_{t,j} = a_{t,j}(q'')
\]

(20)

where \(a_{t,j}(q'')\) is defined in a manner similar to (11), and

\[
\beta''_{t,j} = \begin{cases} 1 & \text{if } (i) \ s_t \in D* \land j = 1(h_t') \land r(h_{t-1}', j) = t-1 \\
0 & \text{otherwise} \\
\end{cases}
\]

(ii) \(s_t \in D* \land a_t \in T_t(q'') \land r(h_t', j) = t
\]

(21)
The only difference with the strategies of section 3 is that, here, politicians take all opportunities for action that ensure reelection. Strategy B'' illustrates therefore the assertion that, when indifferent, politicians choose the voter's preferred move.

Proposition 3

(a'', B'') is a PBE of Γ.

Proof

The proof is similar to that of propositions 1 and 2.

We shall now establish a ranking of the above tolerance levels. The interest of this is to determine which equilibrium has the lowest level of strategic caution, so that a welfare ranking can be obtained.

Proposition 4

For any $\delta \in (0, 1)$, $q'(\delta) < q(\delta) < q''(\delta) < p$.

Proof

We first show that $q'' < p$. By definition

$$
\nu(q'') = (1-\delta)E \sum_{t-1, t \text{ odd}} [\delta^{t-1}E^{P}P(I_{D_{t}+L_{t-1}(q'')}Y_{t}) + \delta^{t}\nu(p_{t+1}(H_{t+1}))]
$$ \hspace{2cm} (22)

If \(p \leq q'' \), \(T_t(q'') = \emptyset \), so \(p_{t+1}(H_{t+1}) = p \) and equation (22) reduces to \(v(q'') = \frac{\delta}{1+\delta} v(p) \), which is absurd for any \(\delta > 0 \).

Next, we show that \(q < q'' \). In equation (22), let us take the expectation term by term, apply Jensen's inequality and use the martingale property of Bayesian posteriors (which implies that \(E[P_{t+1}(H_{t+1})|p] = p \)). We get

\[
v(q'') \geq \sum_{t-1, t \text{ odd}} (1-\delta) \delta^{t-1} E^p[I_{D \land T_{t}}(q'') Y_t] + (1-\delta) \frac{\delta}{1-\delta^2} v(p)
\]

That is,

\[
v(q'') \geq \sum_{t-1, t \text{ odd}} (1-\delta) \delta^{t-1} E^p[I_{D \land T_{t}}(q'') Y_t] + v(q)
\]

Hence, \(q < q'' \).

Finally, we show that \(q' < q \) for any \(\delta > 0 \). By definition,

\[
v(q) = \frac{\delta}{1+\delta} v(p)
\]

\[
v(q') + \delta E \sum_{t-1, t \text{ odd}} [\delta^{t-1} E^p(I_{D \land T_{t}}(q') Y_t) + \delta^t v(p_{t+1}(H_{t+1}))]
\]

\[
= \frac{\delta}{1-\delta^2} v(p)
\]

In the last equation, switching expectation and summation, using Jensen's inequality and the martingale property of posteriors, we get
\[v(q') + \sum_{t=1, t \text{ odd}}^{\infty} \delta^{t-1} E(I_{D_t \land T_t}(q')Y_t) + \frac{\delta^2}{1-\delta^2} v(p) \leq \frac{\delta}{1-\delta^2} v(p) \]

i.e.

\[v(q') + \sum_{t=1, t \text{ odd}}^{\infty} \delta^{t-1} E(I_{D_t \land T_t}(q')Y_t) \leq \frac{\delta}{1+\delta} v(p) - v(q) \]

Hence, \(q' < q \) whenever \(\delta > 0 \). \[\text{QED} \]

5. **An example**

We introduce in this subsection a parameterized example in which our notion of "information content" can be summarized by one scalar parameter. The example also shows that the set of "acceptable actions" in any PBE of \(\Gamma \) is non-empty. Note that this does not preclude inaction to be an equilibrium outcome.

Consider an opportunity for action defined by the following two densities, defined on the given support \(\Omega = [-1, +1] \):

\[
\begin{align*}
f^c(\epsilon_t, A) &= \begin{cases} (1-A)/2 & \text{on } [-1,0] \\ 1/(2-A) & \text{on } [0, +1] \end{cases} \\
f^u(\epsilon_t, A) &= \begin{cases} 1/(2-A) & \text{on } [-1.0] \\ (1-A)/2 & \text{on } [0, +1] \end{cases}
\end{align*}
\]

(28)

Note that the parameter \(A \) fully describes \(F^c \) and \(f^u \) given \(\Omega \). If \(A = 0 \), the two densities collapse to the uniform density on \([-1, +1]\), and \(\epsilon_t \) is drawn from a unique distribution whatever the level of competence. The action has thus no information content. If \(A = 1 \), \(f^u \) becomes the uniform density on \([-1,0]\), while \(f^c \) becomes the uniform density on \([0, +1]\). Posterior beliefs are either 0 or 1
"almost everywhere" (i.e., except at \(\epsilon_t = 0 \)), and the action is perfectly revealing. Note that for any \(A \in [0,1) \), \(f^c \) and \(f^u \) have a common support.

Suppose now that in each period, nature draws \(A \) from some distribution defined on \([0,1]\), and denote by \(a_t \) a realization of \(A \) at \(t \). For \(a_t \) to define an "acceptable action" in the sense of section 2, we must have

\[
a_t \in T_{t_j} \iff \frac{pf^c(e_t, a_t)}{pf^c(e_t, a_t) + (1-p)f^u(e_t, a_t)} > q
\]

This can be reexpressed, after some rearrangement, as a condition on the likelihood ratio \(L(a_t) = \frac{f^c}{f^u} \):

\[
L(a_t) > \frac{q''(1-p)}{p(1-q'')} \tag{30}
\]

Denote by \(\lambda \) the right-hand-side of (30), and notice that proposition 4 implies that \(\lambda < 1 \). Equation (30) requires simultaneously

\[
\frac{(1-a_t)(2-a_t)}{2} > \lambda \quad \text{on} \quad [-1,0] \tag{31}
\]

\[
\frac{2}{(1-a_t)(2-a_t)} > \lambda \quad \text{on} \quad [0,1]
\]

Combining these two inequalities, we obtain
\[
\frac{2}{\lambda} > (1-a_\varepsilon)(2-a_\varepsilon) > 2\lambda
\] \hfill (32)

It can be checked that for any \(\lambda \in (0,1) \), the set

\[
T_\varepsilon(q'') = \{ a_\varepsilon \in [0,1] : \frac{2}{\lambda} > (1-a_\varepsilon)(2-a_\varepsilon) > 2\lambda \}
\] \hfill (33)

is nonempty.
5. **Concluding remarks**

Our election game encompasses a learning process about the competence characterizing each politician. All players hold symmetric beliefs. In equilibrium, an incumbent politician may see his reputation for competence drop below average without being automatically replaced. This stems from the existence of an incumbency advantage, a well-documented hypothesis in the political science literature, which is derived endogenously in our model. Furthermore, the equilibrium behaviour of elected politicians exhibits what we call *strategic caution*, consisting of avoiding those opportunities for action that might strongly reveal the incumbent's competence, *either way*. This result comes from an asymmetry in the incentive structure. The incumbency advantage is equivalent for the voter to a switching cost: whenever she cannot update her beliefs, she prefers to keep the incumbent. This creates a bias in favor of inaction for the politician, and results in strategic caution. Note that strategic caution results from the structure of incentives, not from the politicians' preferences.

Such behaviour entails a loss for the voter. By minimizing the amount of information available to the voter at reelection time, the politician prevents her from making an optimal retaining/firing decision. If contracts contingent on the information available to the politician when deciding upon acting were possible, the politician could be forced into action whenever appropriate. The
voter's problem would then be related, but not identical, to a class of statistical problems called bandit problems12.

From the voter's point of view, the question is thus: provided an optimal solution to the bandit-type problem exists, can a Folk-theorem result be invoked to implement it? In section 4.1 we constructed a perfect equilibrium which reduces but does not eliminate the loss to the voter due to strategic caution. This equilibrium specifies relatively simple strategies. It escapes the usual problem of Folk-theorem equilibria which require an implausible degree of rationality from all players. This problem is especially worrisome in asymmetric-horizon models, where each one of an infinite sequence of short players must display the same degree of rationality, lest the whole equilibrium unravels.

Our results may be used to shed some light on the electoral cycle in U.S. foreign policy. Some of our assumptions must obviously be softened. For instance, the notion that a president is free to act as a statesman in his second term is somewhat inaccurate since he is bound to be perceived as a "lame duck" by foreign heads of states, so that actual opportunities for action may be few. By contrast, "no action" may not always be a feasible

12 A bandit problem (a bandit is a casino slot-machine) consists of choosing one among several stochastic processes in order to maximize expected gains. The essence of the solution to a bandit problem is a trade-off between the current gains or losses from trials and their informational value, the long-term goal of the experimenter being to learn the parameters of the processes. Here, the "bandit" has an infinite number of arms (the politicians) each having a finite life, so that learning is very limited. See, among others, Berry and Fristedt (1985). We are indebted to Jeff Banks for pointing this out to us.
alternative for a first-term president faced with a foreign-policy challenge. This being said, we predict that rational presidents tend to be cautious in foreign policy in their first terms, in the sense of avoiding initiatives where their personal competence is obviously at stake. This prediction may be used to shed some light on the contrasting electoral performance of the Carter and Reagan-I presidencies. By our definitions, President Carter ignored the cycle and engaged in activist, "hands-on" foreign policy (one may think of the multiple human-rights initiatives or of the disarmament negotiations), while President Reagan pretty much followed Quandt's precepts quoted in the introduction of this paper. The "competence factor" viewed in this strategic way may help explain why President Carter failed where President Reagan succeeded, even though their respective competence levels in foreign policy might not have been so different at the time of accession to the White House.
Lemma 1

Let Y be an increasing function of ϵ, and let the distribution $F(\epsilon|\theta_1)$ dominate $F(\epsilon|\theta_2)$ in the first order. Then $E(Y|\theta_1) > E(Y|\theta_2)$.

Proof

Lemma 2

$v(.)$ is an increasing function.

Proof

Expanding expression (11) in the text for $p_{tj} = z$, and using the stationarity of S and A to suppress time subscripts, we have

$$v(z) = \int \int \beta^* [S,E(\epsilon_t)] \left[z E Y(S,\epsilon_t) + (1-z) E Y(S,\epsilon_t) \right] dF(S) dH(A)$$

(34)

where $F(S)$ is the distribution of S and $H(A)$ is the distribution of A. Differentiating with respect to z, we have

$$\frac{dv(z)}{dz} = \int \int \beta^* (.) \left[E Y(S,\epsilon_t) - E Y(S,\epsilon_t) \right] dF(S) dH(A)$$

(35)

The term in square brackets is positive by lemma 1, so the whole R.H.S. expression is positive. QED
References

___: Game theory with applications to economics; Oxford University Press, 1986.

___ and E.S. MASKIN: The Folk theorem in repeated games with discounting or with incomplete information; Econometrica 54, 1986, pp 533-554.

Figure 1

Period t

TIME

A_t

S_t

E_t

election t (voter's action)

politician's action

election $t + 1$ (voter's action)

h_t

h'_t

h_{t+1}

h'_{t+1}
1986

86/01 Arnoud DE MEYER

"The R & D/Production interface".

86/02 Philippe A. NAERT
Marcel WEVERBERGH
and Guido VERSWIJVEL

"Subjective estimation in integrating
communication budget and allocation

86/03 Michael BRIMM

"Sponsorship and the diffusion of organizational
innovation: a preliminary view".

86/04 Spyros MAKRIDAKIS
and Michèle HIBON

"Confidence intervals: an empirical
investigation for the series in the M-Competition".

86/05 Charles A. WYPLOSZ

"A note on the reduction of the workweek",

86/06 Francesco GIAVazzi,
Jeff R. SHEEN and
Charles A. WYPLOSZ

"The real exchange rate and the focal
aspects of a natural resource discovery",

86/07 Douglas L. MacLACHLAN
and Spyros MAKRIDAKIS

"Judgmental biases in sales forecasting",
February 1986.

86/08 José de la TORRE and
David H. NECKAR

"Forecasting political risks for
international operations", Second Draft: March 3,
1986.

86/09 Philippe C. HASPESLAGH

"Conceptualizing the strategic process in
diversified firms: the role and nature of the

86/10 R. MOENART,
Arnoud DE MEYER,
J. BARBE and
D. DESCHOOLMEESTER.

"Analysing the issues concerning
technological de-maturity".

86/11 Philippe A. NAERT
and Alain BULTEZ

"From "Lydiometry" to "Pinkhamization":
misspecifying advertising dynamics rarely
affects profitability".

86/12 Roger BETANCOURT
and David GAUTSCHI

"The economics of retail firms", Revised
April 1986.

86/13 S.P. ANDERSON
and Damien J. NEVEN

"Spatial competition à la Cournot".

86/14 Charles WALDMAN

"Comparaison internationale des marges brutes du

86/15 Mihkel TOMBAK and
Arnoud DE MEYER

"How the managerial attitudes of firms with
FMS differ from other manufacturing firms:

86/16 B. Espen ECKBO and
Herwig M. LANGOHR

"Les primes des offres publiques, la note
d'information et le marché des transferts de
contrôle des sociétés".

86/17 David B. JEMISON

"Strategic capability transfer in acquisition

86/18 James TEOUL
and V. MALLERET

"Towards an operational definition of
services", 1986.

86/19 Rob R. WEITZ

"Nostradamus: a knowledge-based
forecasting advisor".

86/20 Albert CORHAY,
Gabriel HAWAWINI
and Pierre A. MICHEL

"The pricing of equity on the London stock
exchange: seasonality and size premium",
June 1986.

86/21 Albert CORHAY,
Gabriel A. HAWAWINI
and Pierre A. MICHEL

"Risk-premia seasonality in U.S. and

86/22 Albert CORHAY,
Gabriel A. HAWAWINI
and Pierre A. MICHEL

"Seasonality in the risk-return relationships
some international evidence", July 1986.
86/27 Karel COOL and Ingemar DIERICKX "Negative risk-return relationships in business strategy: paradox or truism?", October 1986.
86/28 Manfred KETS DE VRIES and Danny MILLER "Interpreting organizational texts.
86/29 Manfred KETS DE VRIES "Why follow the leader?".
86/30 Manfred KETS DE VRIES "The succession game: the real story.
86/31 Arnoud DE MEYER "Flexibility: the next competitive battle", October 1986.
86/32 Karel COOL and Dan SCHENDEL Performance differences among strategic group members", October 1986.
86/35 Jean DERMIN "Measuring the market value of a bank, a primer", November 1986.
86/37 David GAUTSCHI and Roger BETANCOURT "The evolution of retailing: a suggested economic interpretation".
86/40 Charles WYPLOSZ "Capital flows liberalization and the EMS, a French perspective", December 1986.
86/42 Kasra FERDOWS and Per LINDBERG "FMS as indicator of manufacturing strategy", December 1986.
86/44 Ingemar DIERICKX Carmen MATUTES and Damien NEVEN "Value added tax and competition", December 1986.
86/44 Damien NEVEN "Prisoners of leadership".
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Authors</th>
<th>Title</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>87/02</td>
<td>Claude VIALLET</td>
<td>"An empirical investigation of international asset pricing", November 1986.</td>
<td>87/15 Spyros MAKRIDAKIS</td>
</tr>
<tr>
<td>87/03</td>
<td>David GAUTSCHI and Vithala RAO</td>
<td>"A methodology for specification and aggregation in product concept testing", Revised Version: January 1987.</td>
<td>87/16 Susan SCHNEIDER and Roger DUNBAR</td>
</tr>
<tr>
<td>87/04</td>
<td>Sumantra GHOSHAL and Christopher BARTLETT</td>
<td>"Organizing for innovations: case of the multinational corporation", February 1987.</td>
<td>87/17 André LAURENT and Fernando BARTOLOME</td>
</tr>
<tr>
<td>87/05</td>
<td>Arnoud DE MEYER and Kasia FERDOWS</td>
<td>"Managerial focal points in manufacturing strategy", February 1987.</td>
<td>87/18 Reinhard ANGELMAR and Christoph LIEBSCHER</td>
</tr>
<tr>
<td>87/06</td>
<td>Arun K. JAIN, Christian PINSON and Narish K. MALHOTRA</td>
<td>"Customer loyalty as a construct in the marketing of banking services", July 1986.</td>
<td>87/19 David BEGG and Charles WYPLOSZ</td>
</tr>
<tr>
<td>87/07</td>
<td>Rolf BANZ and Gabriel HAWAWINI</td>
<td>"Equity pricing and stock market anomalies", February 1987.</td>
<td>87/20 Spyros MAKRIDAKIS</td>
</tr>
<tr>
<td>87/08</td>
<td>Manfred KETS DE VRIES</td>
<td>"Leaders who can't manage", February 1987.</td>
<td>87/21 Susan SCHNEIDER</td>
</tr>
<tr>
<td>87/09</td>
<td>Lister VICKERY, Mark PILKINGTON and Paul READ</td>
<td>"Entrepreneurial activities of European MBAs", March 1987.</td>
<td>87/22 Susan SCHNEIDER</td>
</tr>
<tr>
<td>87/10</td>
<td>André LAURENT</td>
<td>"A cultural view of organizational change", March 1987.</td>
<td>87/23 Roger BETANCOURT and David GAUTSCHI</td>
</tr>
<tr>
<td>87/11</td>
<td>Robert FILDES and Spyros MAKRIDAKIS</td>
<td>"Forecasting and loss functions", March 1987.</td>
<td>87/24 C.B. DERR and André LAURENT</td>
</tr>
<tr>
<td>87/13</td>
<td>Sumantra GHOSHAL and Nitin NOHRIA</td>
<td>"Multinational corporations as differentiated networks", April 1987.</td>
<td>87/26 Roger BETANCOURT and David GAUTSCHI</td>
</tr>
<tr>
<td>87/14</td>
<td>Landis GABEL</td>
<td>"Product Standards and Competitive Strategy: An Analysis of the Principles", May 1987.</td>
<td>87/27 Roger BETANCOURT and David GAUTSCHI</td>
</tr>
<tr>
<td>Volume</td>
<td>Author(s)</td>
<td>Title</td>
<td>Issue Date</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>87/27</td>
<td>Michael Burda</td>
<td>"Is there a capital shortage in Europe?", August 1987.</td>
<td>87/39</td>
</tr>
<tr>
<td>87/28</td>
<td>Gabriel Hawawini</td>
<td>"Controlling the interest-rate risk of bonds: an introduction to duration analysis and immunization strategies", September 1987.</td>
<td>87/40</td>
</tr>
<tr>
<td>87/29</td>
<td>Susan Schneider and Paul Shrivastava</td>
<td>"Interpreting strategic behavior: basic assumptions themes in organizations", September 1987.</td>
<td>87/41</td>
</tr>
<tr>
<td>87/30</td>
<td>Jonathan Hamilton and W. Bentley Macleod</td>
<td>"Spatial competition and the Core", August 1987.</td>
<td>87/42</td>
</tr>
<tr>
<td>87/31</td>
<td>Martine Quinzii and J. F. Thisse</td>
<td>"On the optimality of central places", September 1987.</td>
<td>87/43</td>
</tr>
<tr>
<td>87/32</td>
<td>Arnoud De Meyer</td>
<td>"German, French and British manufacturing strategies less different than one thinks", September 1987.</td>
<td>87/44</td>
</tr>
<tr>
<td>87/33</td>
<td>Yves Doz and Amy Shuen</td>
<td>"A process framework for analyzing cooperation between firms", September 1987.</td>
<td>87/45</td>
</tr>
<tr>
<td>87/35</td>
<td>P. J. Lederer and J. F. Thisse</td>
<td>"Competitive location on networks under discriminatory pricing", September 1987.</td>
<td>88/01</td>
</tr>
<tr>
<td>87/36</td>
<td>Manfred Kets de Vries</td>
<td>"Prisoners of leadership", Revised version October 1987.</td>
<td>88/02</td>
</tr>
<tr>
<td>87/37</td>
<td>Landis Gabel</td>
<td>"Privatization: its motives and likely consequences", October 1987.</td>
<td>88/03</td>
</tr>
<tr>
<td>87/38</td>
<td>Susan Schneider</td>
<td>"Strategy formulation: the impact of national culture", October 1987.</td>
<td>88/04</td>
</tr>
</tbody>
</table>

Manfred Kets de Vries | "The dark side of CEO succession", November 1987. | 87/39 |

Carmen Matutes and Pierre Regibeau | "Product compatibility and the scope of entry", November 1987. | 87/40 |

Gabriel Hawawini and Claude Viallet | "Seasonality, size premium and the relationship between the risk and the return of French common stocks", November 1987. | 87/41 |

Damien Neven and Jacques-F. Thisse | "Combining horizontal and vertical differentiation: the principle of max-min differentiation", December 1987. | 87/42 |

Jean Gabszewicz and Jacques-F. Thisse | "Location", December 1987. | 87/43 |

Ingemar Dierickx and Karel Cool | "Asset stock accumulation and sustainability of competitive advantage", December 1987. | 87/46 |

Michael Lawrence and Spyros Makridakis | "Factors affecting judgemental forecasts and confidence intervals", January 1988. | 88/01 |

Spyros Makridakis | "Predicting recessions and other turning points", January 1988. | 88/02 |

James Teboul | "De-industrialize service for quality", January 1988. | 88/03 |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/12</td>
<td>Spyros MAKRIDAKIS</td>
<td>"Business firms and managers in the 21st century", February 1988</td>
<td></td>
</tr>
<tr>
<td>88/17</td>
<td>Michael BURDA</td>
<td>"Monopolistic competition, costs of adjustment and the behavior of European employment", September 1987.</td>
<td></td>
</tr>
<tr>
<td>88/22</td>
<td>Lars-Hendrik RÖLLER</td>
<td>"Proper Quadratic Functions with an Application to AT&T", May 1987 (Revised March 1988).</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--</td>
<td>------------</td>
</tr>
</tbody>
</table>

"Whatever happened to the philosopher-king: the leader's addiction to power, September 1988.

"Quality up, technology down", October 1988

"A discussion of exact measures of information asymmetry: the example of Myers and Majluf model or the importance of the asset structure of the firm", December 1988.

"Negotiation support: the effects of computer intervention and coact level on bargaining outcome", January 1989.

"Shared history or shared culture? The effects of time, culture, and performance on institutionalization in simulated organizations", January 1989.

89/07 Damien J. NEVEN

89/08 Arnoud DE MEYER and Hellmut SCHÜTTE

89/09 Damien NEVEN, Carmen MATUTES and Marcel CORSTIJNS
"Brand proliferation and entry deterrence", February 1989.

89/10 Nathalie DIERKENS, Bruno GERARD and Pierre HILLION
"A market based approach to the valuation of the assets in place and the growth opportunities of the firm", December 1988.

89/11 Manfred KETS DE VRIES and Alain NOEL

89/12 Wilfried VANHONACKER
"Estimating dynamic response models when the data are subject to different temporal aggregation", January 1989.

89/13 Manfred KETS DE VRIES

89/14 Reinhard ANGELMAR

89/15 Reinhard ANGELMAR

89/16 Wilfried VANHONACKER, Donald LEHMANN and Fareena SULTAN

89/17 Gilles AMADO, Claude FAUCHEUX and André LAURENT

89/18 Srinivasan BALAKRISHNAN and Mitchell KOZA

89/19 Wilfried VANHONACKER, Donald LEHMANN and Fareena SULTAN

89/20 Wilfried VANHONACKER and Russell WINER

89/21 Arnoud de MEYER and Kasra FERDOWS

89/22 Manfred KETS DE VRIES and Sydney PERZOW
"What is the role of character in psychoanalysis?" April 1989.

89/23 Robert KORAJCZYK and Claude VIALLET
"Equity risk premia and the pricing of foreign exchange risk" April 1989.

89/24 Martin KILDUFF and Mitchel ABOLAFIA

89/25 Roger BETANCOURT and David GAUTSCHI
"Two essential characteristics of retail markets and their economic consequences" March 1989.

89/26 Charles BEAN, Edmond MALINVAUD, Peter BERNHOLZ, Francesco GIAVAZZI and Charles WYPLOSZ

89/27 David KRACKHARDT and Martin KILDUFF

89/28 Martin KILDUFF

A development framework for computer-supported conflict resolution, July 1989.

A note on firing costs and severance benefits in equilibrium unemployment, June 1989.

The global dimension in leadership and organization: issues and controversies, April 1989.

European integration and trade flows, August 1989.

Home country control and mutual recognition, July 1989.

The specialization of financial institutions, the EEC model, August 1989.

Organisation costs and a theory of joint ventures, September 1989.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/55</td>
<td>"Euro-Japanese cooperation in information technology", September</td>
<td>H. SCHUTTE</td>
</tr>
<tr>
<td></td>
<td>1989.</td>
<td>(FIN) Peter BOSSAERTS and Pierre HILLION</td>
</tr>
<tr>
<td>89/56</td>
<td>"On the practical usefulness of meta-analysis results", September</td>
<td>Wilfried VANHONACKER and Lydia PRICE</td>
</tr>
<tr>
<td></td>
<td>1989.</td>
<td>1990</td>
</tr>
<tr>
<td>89/57</td>
<td>"Market growth and the diffusion of multiproduct technologies",</td>
<td>Teckwon KIM, Lars-Hendrik RÖLLER and Mihkel TOMBAK</td>
</tr>
<tr>
<td></td>
<td>September 1989.</td>
<td>90/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. SINCLAIR-DESIGNÉ</td>
</tr>
<tr>
<td>89/58</td>
<td>"Strategic aspects of flexible production technologies", October</td>
<td>Lars-Hendrik RÖLLER and Mihkel TOMBAK</td>
</tr>
<tr>
<td></td>
<td>1989.</td>
<td>90/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael BURDA</td>
</tr>
<tr>
<td>89/59</td>
<td>"Locus of control and entrepreneurship: a three-country comparative</td>
<td>Manfred KETS DE VRIES, Daphne ZEVALDI, Alain NOEL and Mihkel TOMBAK</td>
</tr>
<tr>
<td></td>
<td>study", October 1989.</td>
<td>90/03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arnoud DE MEYER</td>
</tr>
<tr>
<td>89/60</td>
<td>"Simulation graphs for design and analysis of discrete event</td>
<td>Enver YUCESAN and Lee SCHRUBEN</td>
</tr>
<tr>
<td></td>
<td>simulation models", October 1989.</td>
<td>90/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gabriel HAWAWINI and Eric RAJENDRA</td>
</tr>
<tr>
<td>89/61</td>
<td>"Interpreting and responding to strategic issues: The impact of</td>
<td>Susan SCHNEIDER and Arnoud DE MEYER</td>
</tr>
<tr>
<td></td>
<td>national culture", October 1989.</td>
<td>90/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gabriel HAWAWINI and Bertrand JACQUILLAT</td>
</tr>
<tr>
<td>89/62</td>
<td>"Technology strategy and international R&D operations", October</td>
<td>Arnoud DE MEYER Gabriel HAWAWINI and Eric RAJENDRA</td>
</tr>
<tr>
<td></td>
<td>1989.</td>
<td>90/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gabriel HAWAWINI</td>
</tr>
<tr>
<td>89/64</td>
<td>"Complexity of simulation models: A graph theoretic approach",</td>
<td>Enver YUCESAN and Lee SCHRUBEN</td>
</tr>
<tr>
<td></td>
<td>November 1989.</td>
<td>90/08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tawfik JELASSI and B. SINCLAIR-DESIGNÉ</td>
</tr>
<tr>
<td>89/65</td>
<td>"MARS: A mergers and acquisitions reasoning system", November</td>
<td>Soumitra DUTTA and Piero BONISSONE</td>
</tr>
<tr>
<td></td>
<td>1989.</td>
<td>90/09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alberto GIOVANNINI and Jae WON PARK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joyce BRYER and Tawfik JELASSI</td>
</tr>
<tr>
<td>Paper ID</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>90/13</td>
<td>Soumitra DUTTA and Shashi SHEKHAR</td>
<td>"Approximate Reasoning about Temporal Constraints in Real Time Planning and Search"</td>
</tr>
<tr>
<td>90/15</td>
<td>Arnoud DE MEYER, Dirk DESCHOOLMEESTER, Rudy MOENAERT and Jan BARBE</td>
<td>"The Internal Technological Renewal of a Business Unit with a Mature Technology"</td>
</tr>
<tr>
<td>90/22</td>
<td>Ingo WALTER</td>
<td>"European Financial Integration and Its Implications for the United States", February 1990.</td>
</tr>
<tr>
<td>90/33</td>
<td>Caren SIEHL, David BOWEN and Christine PEARSON</td>
<td>"The Role of Rites of Integration in Service Delivery", March 1990.</td>
</tr>
<tr>
<td>Paper ID</td>
<td>Author(s)</td>
<td>Title of Paper</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>90/34</td>
<td>Jean DERMINE</td>
<td>"The Gains from European Banking Integration, a Call for a Pro-Active Competition Policy", April 1990.</td>
</tr>
<tr>
<td>90/40</td>
<td>Manfred KETS DE VRIES</td>
<td>"Leaders on the Couch: The case of Roberto Calvi", April 1990.</td>
</tr>
<tr>
<td>90/42</td>
<td>Joel STECKEL and Wilfried VANHONACKER</td>
<td>"Cross-Validating Regression Models in Marketing Research", (Revised April 1990).</td>
</tr>
<tr>
<td>90/44</td>
<td>Gilles AMADO, Claude FAUCHEUX and André LAURENT</td>
<td>"Organizational Change and Cultural Realities: Franco-American Contrasts", April 1990.</td>
</tr>
<tr>
<td>90/45</td>
<td>Soumitra DUTTA and Piero BONISSONE</td>
<td>"Integrating Case Based and Rule Based Reasoning: The Possibilistic Connection", May 1990.</td>
</tr>
<tr>
<td>90/46</td>
<td>Spyros MAKRIDAKIS and Michèle HIBON</td>
<td>"Exponential Smoothing: The Effect of Initial Values and Loss Functions on Post-Sample Forecasting Accuracy".</td>
</tr>
<tr>
<td>90/47</td>
<td>Lydia PRICE and Wilfried VANHONACKER</td>
<td>"Improper Sampling in Natural Experiments: Limitations on the Use of Meta-Analysis Results in Bayesian Updating", Revised May 1990.</td>
</tr>
<tr>
<td>90/53</td>
<td>Michael Burda</td>
<td>"The Consequences of German Economic and Monetary Union", June 1990.</td>
</tr>
<tr>
<td>Paper ID</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>90/64</td>
<td>Sumantra GHOSHAL</td>
<td>"Internal Differentiation and Corporate Performance: Case of the Multinational Corporation", August 1990</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>90/80</td>
<td>Anil GABA and Robert WINKLER</td>
<td>Using Survey Data in Inferences about Purchase Behaviour, October 1990</td>
</tr>
<tr>
<td>90/81</td>
<td>Tawfik JELASSI</td>
<td>Du Présent au Futur: Bilan et Orientations des Systèmes Interactifs d'Aide à la Décision, October 1990</td>
</tr>
<tr>
<td>90/82</td>
<td>Charles WYPLOSZ</td>
<td>Monetary Union and Fiscal Policy Discipline, November 1990</td>
</tr>
<tr>
<td>90/83</td>
<td>Nathalie DIERKENS and Bernard SINCLAIR-DESGAGNE</td>
<td>Information Asymmetry and Corporate Communication: Results of a Pilot Study, November 1990</td>
</tr>
<tr>
<td>90/84</td>
<td>Philip M. PARKER</td>
<td>The Effect of Advertising on Price and Quality: The Optometric Industry Revisited, December 1990</td>
</tr>
<tr>
<td>90/85</td>
<td>Avijit GHOSH and Vikas TIBREWALA</td>
<td>Optimal Timing and Location in Competitive Markets, November 1990</td>
</tr>
</tbody>
</table>