"EQUITY RISK PREMIA AND THE PRICING OF FOREIGN EXCHANGE RISK"

by
Robert KORAJCZYK*
and
Claude VIALLET**

N° 89 / 23

* Kellogg Graduate School of Management, Northwestern University

** Associate Professor of Finance and Area Coordinator, INSEAD, Boulevard de Constance, 77305 Fontainebleau, France

Director of Publication:
Charles WYPLOSZ, Associate Dean for Research and Development

Printed at INSEAD, Fontainebleau, France
EQUITY RISK PREMIA AND THE PRICING OF FOREIGN EXCHANGE RISK*

Robert A. Korajczyk
Kellogg Graduate School of Management
Northwestern University

Claude J. Viallet
INSEAD

April 1989
Very Preliminary
Comments Welcome

*This research was completed thanks to the financial support of INSEAD.
EQUITY RISK PREMIA AND THE PRICING OF FOREIGN EXCHANGE RISK

Abstract

We investigate the relation between the risk premia observed in forward foreign exchange markets and international equity markets. If these markets share common sources of risk then the time variation in forward risk premia should be related to the forward contract’s sensitivity to well-diversified equity benchmark portfolios and the time variation in the risk premia of those benchmark portfolios. We find that the forward contracts have a component of their conditional mean returns that is not reflected in their relation to the equity markets.
There is an extensive body of empirical work which indicates that forward prices for foreign exchange are not unbiased predictors of future spot exchange rates, [e.g., Hansen and Hodrick (1980, 1983), Bilson (1981), Korajczyk (1985), Mark (1985), and the extensive review by Hodrick (1987)]. That is, the evidence indicates that \(E_{t-1}[S_t] \neq G_{t-1} \), where \(G_{t-1} \) is the forward exchange rate set at time \(t-1 \) for delivery at time \(t \), \(S_t \) is the spot exchange rate at time \(t \), and \(E_{t-1}[\cdot] \) denotes expectations conditional on information available at time \(t-1 \).

This evidence has been variously interpreted as evidence of (a) inefficiencies in the forward market; (b) forward risk premia which vary through time; and (c) "peso" problems in which the anticipation of rare, but important, events influence the pricing of assets in ways that induce ex post bias in the forward rates when the observation period is short.

There is also a growing body of evidence that the risk premia on common stocks vary through time. This can be seen through the evidence of seasonality in stock returns [e.g., Gultekin and Gultekin (1983)] as well as evidence on the relation between equity risk premia and observable instruments for time varying expected returns [e.g., Keim and Stambaugh (1986) or Fama and French (1988)].

The purpose of this paper is to investigate the relation between the forecastable components of returns in the forward exchange market and international equity markets. In particular we wish to determine whether the observed risk premia in the forward market can be explained by the premia observed in the equity markets.

I. The Implications of an Intertemporal Asset Pricing Model

We begin by utilizing the first order conditions from a standard
representative agent's discrete-time utility maximization problem, [see Lucas (1982) or Hodrick (1987, Chp.2)] which states that

\[E_{t-1}[Q_{mt}R_{jt}] = 1 \]

(1)

where \(R_{jt} \) is the gross nominal (currency m) return on asset j from t-1 to t and \(Q_{mt} \) is the marginal rate of substitution of currency m between t-1 and t.

Now let \(R_{ft} \) denote the gross return on a nominally (in currency m) riskless asset. Relation (1) implies that \(R_{ft} E_{t-1}[Q_{mt}] = 1 \). This plus the definition of conditional covariance leads to

\[E_{t-1}(R_{jt}) - R_{ft} = -R_{ft} \text{Cov}_{t-1}[Q_{mt}, R_{jt}] \]

(2)

where \(\text{Cov}_{t-1}[\cdot, \cdot] \) denotes the covariance conditional on time t-1 information.

From this we obtain a conditional asset pricing relation in terms of a benchmark portfolio which is on the conditional mean/variance frontier. Assume that there is a traded asset with returns given by

\[R_{mt} = Q_{mt}/E_{t-1}(Q_{mt})^2. \]

(3)

Hansen and Richard (1987) show that the conditional mean/variance frontier can be formed by linear combinations of \(R_{mt} \) and \(R_{ft} \). That is, if \(R_{bt} = \omega_{t-1}R_{mt} + (1-\omega_{t-1})R_{ft} \) then the benchmark portfolio return, \(R_{bt} \), is conditionally mean/variance efficient. This allows us to write (2) as

\[E_{t-1}(R_{jt}) - R_{ft} = \beta_{jt-1}[E(R_{bt}) - R_{ft}] \]

(4)
where \(\beta_{jt-1} = \text{Cov}_{t-1}[R_{jt}, R_{bt}] / \text{Var}_{t-1}[R_{bt}] \).

This is true for any asset or portfolio, \(j \). Consider the following portfolio. Invest \(S_{t-1} \) dollars in \(R_f \), where \(S_{t-1} \) is the current spot exchange rate for the foreign currency, and enter into a forward contract for one unit of the currency. The excess rate of return on this portfolio is

\[
\frac{r_{Gt} - (S_t - G_{t-1} + R_{ft}S_{t-1})/S_{t-1} - R_{ft} - (S_t - G_{t-1})/S_{t-1}}{S_{t-1}}.
\]

Thus, we get an expression for the equilibrium difference between the forward exchange rate and the expected future spot rate

\[
E(S_{t} - G_{t-1})/S_{t-1} = \beta_{Gt-1}[E(R_{bt}) - R_{ft}] = \beta_{Gt-1}[E(R_{bt}) - R_{ft}] = \beta_{Gt-1}[E(R_{bt}) - R_{ft}].
\]

The single-beta relation in (5) has been the point of departure for a number of studies which treat the excess return on the benchmark portfolio as a latent variable [e.g., Hansen and Hodrick (1983), Hodrick and Srivastava (1984), and Giovannini and Jorion (1987)]. The latent variable approach utilizes the fact that movements in asset expected returns should be proportional to movements in the expected return on the benchmark portfolio, where the constant of proportionality is the conditional beta. That is, if

\[
E(r_{bt}) = [E(R_{bt}) - R_{ft}] = \alpha'z_{t-1},
\]

then

\[
E(r_{jt}) = \beta_{jt} \alpha'z_{t-1}
\]

for all \(j \). If we assume that betas are constant through time \((\beta_{jt} = \beta_j) \) or
explicitly model the time variation in betas, then (6) implies testable
restrictions on a pooled times series/cross-section of asset returns. These
types of restrictions are tested in the studies cited above.

II. The Role of a Factor Model

Our approach is somewhat different from the one outlined above. We
assume that asset returns follow a factor structure with the factors spanning
the state variables that describe the evolution of the investment opportunity
set. This implies that our benchmark portfolio return, \(R_{bt} \), is a linear
combination of the returns on factor mimicking portfolios. This, in turn,
implies that the risk premia in the forward exchange market should be
determined by the forward contracts' conditional covariances with the factor
mimicking portfolios. This allows us to use security return data to estimate
the return on our benchmark portfolio.

Our assumed factor structure is given by

\[
 r_{jt} = \mu_{jt} + b_{j1}\delta_{1t} + \ldots + b_{jk}\delta_{kt} + \epsilon_{jt}
\]

(7)

where \(\mu_{jt} \) is the expected excess return on asset \(j \), \(b_{ji} \) is the sensitivity of
asset \(j \) to factor \(i \), \(\delta_{it} \) is the realization of factor \(i \) in period \(t \), and \(\epsilon_{jt} \)
is the diversifiable component of asset \(j \)'s return. We assume that \(E(\epsilon_{it}) = 0 \);
\(E(\delta_{it}) = 0 \); \(E(\delta_{it}\epsilon_{jr}) = 0 \) for all \(i, j, t, \) and \(r \); and, for simplicity,
\(E(\delta_{it}\delta_{1r}) = 0 \) for all \(i, 1, t \) and \(r \). Let \(V_n \) denote the covariance matrix of
\(\epsilon_n' = (\epsilon_{1t}, \ldots, \epsilon_{nt}) \). The diversifiability of the \(\epsilon \)'s implies that the
eigenvalues of \(V_n \) are bounded as \(n \) approaches infinity, [see Chamberlain and
Rothschild (1983)].
Constantinides (1989) discusses the relation between the pricing implications of (1)-(4) and the intertemporal arbitrage pricing theory. In general the marginal rate of substitution, Q_{mt}, is a function of all information available at t, denoted Φ_t. Let s_t denote the p-vector of state variables which, given information available at $t-1$, represent a sufficient statistic for Q_{mt} [that is $Q_{mt}(\Phi_t) = \hat{Q}_{mt}(\Phi_{t-1}, s_t)$]. The expected returns on asset j will be determined by the factor sensitivities b_{ji} ($i = 1, \ldots, k$) as well as the covariance of ϵ_j with the state variables, s_t. If we assume that the factors span the state variable, that is $s_t = \Omega s_t$, then this covariance is zero since $E(\epsilon_{jt} s_{jt}) = 0$. Thus, under this spanning assumption, the expected returns on assets are determined by their conditional covariances with the factor. If we can construct portfolios which are perfectly correlated with the factors then the asset pricing model implies that our benchmark portfolio is a linear combination of these factor mimicking portfolios. Thus we can price assets, including forward contracts for foreign exchange, relative to these factor mimicking portfolios.

We use the asymptotic principal components technique of Connor and Korajczyk (1986, 1988) to construct factor mimicking portfolios from the returns on common stocks. If exchange rates and common equities are influenced by the same factors or state variables, then we should be able to use the time variation in the factor mimicking portfolios to explain the apparent time variation in the risk premia in the forward market.

III. Data Description

We examine eight exchange rates in terms of US dollars: the British pound, the Canadian dollar, the Dutch guilder, the French franc, the Italian
lira, the Japan yen, the Swiss franc and the German mark. We use end-of-month exchange rates from August 1973 to December 1986. The starting date was chosen to coincide with the beginning of the current floating exchange rate regime. Spot and forward exchange rates were taken from the Data Resources Incorporated (DRI) data files.

Our sample of equity returns includes stocks from France, Japan, United Kingdom and the United States and spans the period August 1973 to December 1986. Stock exchange data and a summary of our sample data are presented in Table 1. The equity sample includes all assets traded on the New York and American Stock Exchanges, the Tokyo Stock Exchange and the London Stock Exchange. It includes approximately 20% of the Paris Bourse listed stocks. At the end of 1986, these four markets represented nearly 60% of the world stock market capitalization.

Monthly returns in French francs, British pounds and Yen, adjusted for dividends and stock splits, are transformed into US dollar returns using end-of-month exchange rates from the DRI data files. To compute excess returns we use the US Treasury Bill returns from Ibbotson Associates (1988).

To estimate the excess returns on the factor mimicking portfolios we use the asymptotic principal components technique of Connor and Korajczyk (1986, 1988) instead of standard factor analytic techniques. The choice was made on the basis of computational convenience. The asymptotic principal components procedure can accommodate the large number of stocks in our sample (up to 6692) while standard factor analysis packages could not.

The procedure assumes the factor structure in (7) and that an exact multifactor pricing relationship holds, i.e.
Let T be the number of time periods; n the number of securities; R^n the $n \times T$ matrix of excess returns; F the $k \times T$ matrix of realized factors plus risk premia ($F_{jt} = \delta_{jt} + \gamma_{jt}$) and B^n the $n \times k$ matrix of factor loadings. Note that the estimation procedure allows the risk premia, γ_{jt}, to vary through time.

Equation (8) implies that:

$$R^n = B^n F + \epsilon^n$$

(9)

with: $E(F\epsilon^n') = 0$, $E(\epsilon^n) = 0$, and $E(\epsilon^n \epsilon'^n) = V^n$.

Let Ω^n be the $T \times T$ matrix defined by $\Omega^n = R^n' R^n / n$ and G^n the $k \times T$ matrix of the first k eigenvectors of Ω^n. Under the assumption that asset returns follow an approximate k-factor model [in the sense of Chamberlain and Rothschild (1983)] Connor and Korajczyk (1986) show that G^n converges towards a non-singular transformation of F as n goes to infinity. We assume that our equity sample size is large enough to consider G^n estimated from the sample as a transform of F. Consequently, the first k eigenvectors of G^n are estimates of the excess returns on factor mimicking portfolios. In order to use all available data in our sample we employ an extension of the principal components technique from Connor and Korajczyk (1988) which does not require that asset returns must exhibit continuous time series of returns. As a consequence we avoid any survivorship bias.

A major difficulty in any application of factor analysis is the determination of the appropriate number of factors. We choose to present our results using five factors. We have performed our tests using different
numbers of factors and found that the main results of the paper are robust to changes in the number of factors.

IV. Empirical Results

We begin by documenting the fact that returns on forward contracts have forecastable components, hence forward prices cannot be conditionally unbiased predictors of future spot prices. In Table 2 we present results in which we regress $r_{Gt} - (S_t - G_{t-1})/S_{t-1}$ on a constant and the forward premium observed at time $t-1$, $(G_{t-1} - S_{t-1})/S_{t-1}$. If G_{t-1} is a conditionally unbiased predictor, then the intercepts and the slope coefficients should be equal to zero. We use data on eight exchange rates relative to the US dollar. The time period is August 1973 to December 1986. We reject the hypothesis that the intercepts are jointly zero and the hypothesis that the slope coefficients are jointly zero. Thus, the results in Table 2 confirm the findings of others in that there is reliable evidence that forward exchange rates are not unbiased predictors of future spot rates. We also split the period into two subperiods 8-1973 to 7-1979 and 8-1979 to 12-1986. The results are not reported here, but we reject the unbiasedness hypothesis over each subperiod.

We now wish to determine whether the time variation in expected returns on the forward contracts are explained by the risk premia in the factor mimicking portfolios. We begin by assuming that the conditional factor betas of the forward returns are constant through time. We regress each currency's excess forward return, r_{Gt}, on a constant, the excess returns on five factor mimicking portfolios, and the observable forward premium at the beginning of the period. If the factor mimicking portfolios represent the benchmark portfolio, r_{bt}, and the conditional betas are truly constant, then the
intercept and the slope coefficient on the forward premium should be zero. The results are shown in Table 3. The factors, in general, have significant explanatory power as can be seen from the increase in R^2 from Table 2 to Table 3. We do not report the factor betas because their interpretation is made difficult by the standard rotational indeterminacy problem of factor analytic or principal components based methods. Inclusion of the factor mimicking portfolios does not change the joint significance of the intercepts or of the coefficients on the forward premium. In particular, the coefficients seem to change very little with the inclusion of the factor mimicking return. Thus, while the forward returns have significantly correlated with the factor returns, there remains a time-varying component of the forward returns which is unrelated to the time-varying component of equity returns.

Giovannini and Jorion (1987) find that the performance of the latent variable model described above is significantly improved when they allow for time variation in the conditional betas. We allow the forward contracts to have factor betas which are functions of the beginning-of-period forward premium and a dummy which splits the period into two subperiods 8-1973 to 7-1979 and 8-1979 to 12-1986. While we can reject the hypothesis that the factor betas are constant, we still reject the hypothesis that the intercept and forward premium coefficients are zero.

We have also estimated the above models using standard proxies for the benchmark portfolio. These are the value-weighted and equal-weighted portfolios of stocks from the UK, UK, Japan, and France. We obtain basically the same results.
V. Conclusion

We investigate the relation between the risk premia observed in forward foreign exchange markets and international equity markets. If these markets share common sources of risk then the time variation in forward risk premia should be related to the forward contract's sensitivity to well-diversified equity benchmark portfolios and the time variation in the risk premia of those benchmark portfolios.

We find that the forward contracts have a component of their conditional mean returns that is not reflected in their relation to the equity markets. Potential explanations of this phenomenon are (a) there are sources of risk peculiar to the forward markets that are not reflected in equity markets; (b) the methods of constructing benchmark portfolios or modelling the time-variation in conditional betas have failed to reflect important influences in the true benchmark returns; (c) the equity and exchange markets are not fully integrated; or (d) pricing related to rare events (the "peso" problem) leads to measured "risk premia" which are related to perceived changes in the probability of these events. We hope to expand on these potential explanations in future work.
References

Hansen, Lars P., and Hodrick, Robert J., "Risk Averse Speculation in the Forward Exchange Market: An

Endnotes

1. We will use lower case r's to denote excess returns, while upper case R's denote gross returns.

2. Note that this requires $p \leq k$. Here ξ_t denotes the $k \times 1$ vector of factor realizations and Ω is a $p \times k$ matrix with rank p.
Table 1

Stock Exchange and Sample Data

Stock Exchange Data

<table>
<thead>
<tr>
<th>Market</th>
<th>Market capitalization as percent of World Capitalization<sup>a</sup> 31.12.86</th>
<th>Number of listed firms<sup>a</sup> 31.12.86</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYSE & AMEX</td>
<td>27</td>
<td>2371</td>
</tr>
<tr>
<td>Tokyo</td>
<td>22</td>
<td>1551</td>
</tr>
<tr>
<td>London</td>
<td>6</td>
<td>2685</td>
</tr>
<tr>
<td>Paris</td>
<td>2</td>
<td>677</td>
</tr>
<tr>
<td>TOTAL</td>
<td>57%</td>
<td>7284</td>
</tr>
</tbody>
</table>

Sample Data

I. Data Source and Frequency of Returns

<table>
<thead>
<tr>
<th>Country</th>
<th>Data Source</th>
<th>Frequency of Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>CRSP</td>
<td>Monthly</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan Securities Research Institute</td>
<td>Monthly</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>London Share Data Base</td>
<td>Monthly</td>
</tr>
<tr>
<td>France</td>
<td>Compagnie des Agents de Change</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

II. Number of sample firms

| Maximum : 6692 | Average : 5716 | Minimum : 4167 |

^a Source: International Federation of Stock Exchanges Statistics, 1987
Table 2
Regression of forward returns on forward premia, August 1973 - December 1986

\[
\frac{(S_t - G_{t-1})}{S_{t-1}} = a_0 + a_1 \left(\frac{G_{t-1} - S_{t-1}}{S_{t-1}} \right) + v_t
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>(a_0) x 100</th>
<th>(a_1)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>-0.51</td>
<td>-2.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(-1.84)</td>
<td>(-3.54)</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>-0.28</td>
<td>-2.10</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(-2.62)</td>
<td>(-3.45)</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.14</td>
<td>-0.90</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.54)</td>
<td>(-7.77)</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>-0.15</td>
<td>-0.70</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(-0.55)</td>
<td>(-2.48)</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>-0.54</td>
<td>-1.11</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(-1.83)</td>
<td>(-4.18)</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.31</td>
<td>-0.72</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(1.12)</td>
<td>(-1.96)</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.98</td>
<td>-2.16</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(2.43)</td>
<td>(-3.80)</td>
<td></td>
</tr>
<tr>
<td>West Germany</td>
<td>0.20</td>
<td>-1.12</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
<td>(-3.48)</td>
<td></td>
</tr>
</tbody>
</table>

T-statistics in parentheses.

Wald tests:
(a) \(a_0 = 0\) for all countries \(\chi^2 = 31.0\), p-value < .001;
(b) \(a_1 = 0\) for all countries \(\chi^2 = 112.8\), p-value < .001.
Table 3

Seemingly unrelated regression of forward returns on factor mimicking portfolio returns and forward premia.
August 1973 - December 1986

\[
\frac{(S_t - G_{t-1})}{S_{t-1}} = a_0 + b_1 f_{1t} + \ldots + b_5 f_{5t} + a_1 \left(\frac{G_{t-1} - S_{t-1}}{S_{t-1}} \right) + \nu_t
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>(a_0 \times 100)</th>
<th>(a_1)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>-0.74 (-3.62)</td>
<td>-1.04 (-2.16)</td>
<td>0.54</td>
</tr>
<tr>
<td>Canada</td>
<td>-0.35 (-3.26)</td>
<td>-1.98 (-3.26)</td>
<td>0.13</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.21 (0.90)</td>
<td>-0.89 (-8.03)</td>
<td>0.27</td>
</tr>
<tr>
<td>France</td>
<td>-0.49 (-2.11)</td>
<td>-0.65 (-2.36)</td>
<td>0.32</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.80 (-2.88)</td>
<td>-1.16 (-4.44)</td>
<td>0.23</td>
</tr>
<tr>
<td>Japan</td>
<td>-0.09 (-0.46)</td>
<td>-0.60 (-2.10)</td>
<td>0.52</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.56 (1.46)</td>
<td>-2.05 (-3.71)</td>
<td>0.30</td>
</tr>
<tr>
<td>West Germany</td>
<td>-0.13 (-0.50)</td>
<td>-1.13 (-3.72)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

T-statistics in parentheses.

Wald tests: (a) \(a_0 = 0\) for all countries \(\chi^2_8 = 38.5\), p-value <.001;
(b) \(a_1 = 0\) for all countries \(\chi^2_8 = 113.6\), p-value <.001.
INSERAD WORKING PAPERS SERIES

1986

86/01 Arnoud DE MEYER

"The R & D/Production interface".

86/02 Philippe A. NAERT, Marcel NEVERBERGH, and Guido VERGUISVEL

86/03 Michael BRIMM

"Sponsorship and the diffusion of organizational innovations: a preliminary view".

86/04 Spyros MAKRIDAKIS and Michèle RIBON

"Confidence intervals: an empirical investigation for the series in the M-Competition".

86/05 Charles A. WYPOLSZ

86/06 Francesco GIAVAIZZI, Jeff R. BEEEN and Charles A. WYPOLSZ

86/07 Douglas L. MacLACHLAN and Spyros MAKRIDAKIS

86/08 José de la TORRE and David R. NECKAR

86/09 Philippe C. RASPESLAGH

86/10 R. HOENART, Arnoud DE MEYER, J. BARRE and D. DESCZSCHOOLBEEKER.

"Analysing the issues concerning technological de-maturity".

86/11 Philippe A. NAERT and Alain BULTEZ

"From "Lydiameter" to "Pinkhamization": misspecifying advertising dynamics rarely affects profitability".

86/12 Roger BETANCOURT and David GAUTSCHI

"The economics of retail firms", Revised April 1986.

86/13 S.P. ANDERSON and Damien J. NEVEN

"Spatial competition à la Cournot".

86/14 Charles WALDMAN

86/15 Mikhail TOMBAK and Arnoud DE MEYER

"How the managerial attitudes of firms with FMS differ from other manufacturing firms: survey results", June 1986.

86/16 B. Espen ECKBO and Hervig M. LANGOHR

"Les primes des offres publiques, la note d'information et le marché des transferts de contrôle des sociétés".

86/17 David B. JEMISON

86/18 James TEBOL and V. MALLERET

"Towards an operational definition of services", 1986.

86/19 Rob R. WEITZ

"Nostradamus: a knowledge-based forecasting advisor".

86/20 Albert CORHAY, Gabriel RAVAVINI and Pierre A. MICHEL

86/21 Albert CORHAY, Gabriel RAVAVINI and Pierre A. MICHEL

86/22 Albert CORHAY, Gabriel RAVAVINI and Pierre A. MICHEL

86/23 Arnoud DE MEYER

86/24 David GAUTSCHI and Vithala R. RAO

86/25 H. Peter GRAY and Ingo WALTER

86/26 Barry EICHENGREEN and Charles WYPOLSZ

86/27 Karel COOL and Ingemar DIERICKX

"Negative risk-return relationships in business strategy: paradox or truism?", October 1986.

86/28 Manfred KETS DE VRIES and Charles WYPOLSZ

"Interpreting organizational texts.

86/29 Manfred KETS DE VRIES

"Why follow the leader?".

86/30 Manfred KETS DE VRIES

"The succession game: the real story".

86/31 Arnoud DE MEYER

"Flexibility: the next competitive battle", October 1986.

86/31 Arnoud DE MEYER, Jinichiro NAKANE, Jeffrey G. MILLER and Kasra FERDOWS

86/32 Karel COOL and Dan SCRENDEL

87/06 Arun K. Jain, Christian PINSON and Naresh K. Malhotra
"Customer loyalty as a construct in the marketing of banking services", July 1986.

87/07 Rolf Banz and Gabriel Havavini

87/10 André Laurent
"Leaders who can’t manage", February 1987.

87/19 David Begg and Charles VYPLOSZ

87/20 Spyros MAKRIDAKIS
"Entrepreneurial activities of European MBAs", March 1987.

87/23 Roger Betancourt and David GAUTSCHI

87/07 Manfred KETS DE VRIES

87/08 Lister VICKERY, Mark PILKINGTON and Paul READ

87/36 Albert Corrat and Gabriel Havavini

87/09 Kasra Ferdows and Wickham Skinner

87/37 David Gautschi

87/11 Robert FilDES and Spyros MAKRIDAKIS
"The evolution of retailing: a suggested economic interpretation".

87/38 Gabriel Havavini

87/12 Fernando BARTOLOME and André Laurent

87/40 Charles VYPLOSZ
"Capital flows liberalization and the ERM, a French perspective", December 1986.

87/13 Sumantra GHOSHAL and Nitin NOURIA

87/41 Kasra Ferdows and Vickham Skinner

87/15 Spyros MAKRIDAKIS

87/42 Kasra Ferdows and Per Lindberg

87/16 Susan Schneider

87/43 Damien Neven

87/17 André Laurent and Fernando BARTOLOME

87/44 Ingebor Diercx
"Value added tax and competition", December 1986.

87/18 Reinhard Angelmar and Christoph Liebscher

1987

87/01 Manfred KETS DE VRIES
"Prisoners of leadership".

87/02 Claude Viallet

87/03 David Gautschi and Vithala Rao

87/04 Sumantra Ghoshal and Christopher BartleTT

87/05 Arnaud De Meyer and Kasra Ferdows

87/07 Manfred KETS DE VRIES

87/08 Lister VICKERY, Mark PILKINGTON and Paul READ

87/19 Reinhard Angelmar and Christoph Liebscher

87/20 Spyros MAKRIDAKIS

87/21 Susan Schneider
"The demand for retail products and the household production model: new views on complementarity and substitutability".
<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987/32</td>
<td>Arnoud DE MEYER</td>
<td>"German, French and British manufacturing strategies less different than one thinks", September 1987.</td>
</tr>
</tbody>
</table>
88/12 Spyros MAKRIDAKIS

"Business firms and managers in the 21st century", February 1988

88/13 Manfred KETS DE VRIES

88/14 Alain NOEL

88/15 Anil DEOLALIKAR and Lars-Hendrik ROLLER

88/16 Gabriel HAVAVINI

88/17 Michael BURDA

"Monopolistic competition, costs of adjustment and the behavior of European employment", September 1987.

88/18 Michael BURDA

88/19 M.J. LAVERENCE and Spyros MAKRIDAKIS

88/20 Jean DERMIN, Damien NEVEN and J.F. THISSE

88/21 James TEBOUL

"De-industrialize service for quality", March 1988 (88/03 Revised).

88/22 Lars-Hendrik ROLLER

"Proper Quadratic Functions with an Application to ART", May 1987 (Revised March 1988).

88/23 Sjur Didrik FLAM and Georges ZACCOUR

88/24 B. Espen ECKBO and Hervig LANGOUIR

88/25 Everett S. GARDNER and Spyros MAKRIDAKIS

88/26 Sjur Didrik FLAM and Georges ZACCOUR

88/27 Murugappa KRISHNAN and Lars-Hendrik ROLLER

88/28 Sunanta GHOSHAL and C.A. BARTLETT

88/29 Naresh K. MALHOTRA, Christian PINSON and Arun K. JAIN

88/30 Catherine C. ECKEL and Theo VERMAELEN

88/31 Sunanta GHOSHAL and Christopher BARTLETT

88/32 Kasra FERDOVS and David SACKRIDER

88/33 Michel M. TOMBAK

88/34 Michel M. TOMBAK

88/35 Michel M. TOMBAK

88/36 Vikas TIBREVALA and Bruce BUCHANAN

88/37 Murugappa KRISHNAN and Lars-Hendrik ROLLER

88/38 Manfred KETS DE VRIES

"The motivating Role of Envy: A Forgotten Factor in Management", April 08.

88/39 Manfred KETS DE VRIES

88/40 Josef LAKONISROK and Theo VERMAELEN

88/41 Charles VYPLOZ

88/42 Paul EVANS

88/43 B. SINCLAIR-DESCAGNE

88/44 Essaa MAMZOU and Spyros MAKRIDAKIS

88/45 Robert KORAJCZYK and Claude VIALLET

88/46 Yves DOZ and Amy SHUEN

Asymmetric cannibalism between substitute items listed by retailers*, September 1988.

Whatever happened to the philosopher-kings: the leader's addiction to power, September 1988.

The interpersonal structure of decision making: a social comparison approach to organizational choice*, November 1988.

Quality up, technology down*, October 1988.

A discussion of exact measures of information asymmetry: the example of Myers and Majluf model or the importance of the asset structure of the firm*, December 1988.

The chief technology officer*, December 1988.

Negotiation support: the effects of computer intervention and conflict level on bargaining outcome*, January 1989.

Shared history or shared culture? The effects of time, culture, and performance on institutionalization in simulated organizations*, January 1989.

Structural adjustment in European retail banking. Some view from Industrial organisation*, January 1989.

Brand proliferation and entry deterrence*, February 1989.

A market based approach to the valuation of the assets in place and the growth opportunities of the firm*, December 1988.
89/11 Manfred KETS DE VRIES and Alain NOEL

89/12 Wilfried VANHONACKER

"Estimating dynamic response models when the data are subject to different temporal aggregation", January 1989.

89/13 Manfred KETS DE VRIES

89/14 Reinhard ANGELMAR

89/15 Reinhard ANGELMAR

89/16 Wilfried VANHONACKER, Donald LEHMANN and Fareena SULTAN

"Combining related and sparse data in linear regression models", February 1989

89/17 Gilles AMADO, Claude FAUCHEUX and André LAURENT

"Changement organisationnel et réalités culturelles: contrastes franco-américains", March 1989

89/18 Srinivasan BALAKRISHNAN and Mitchell KOZA

"Information asymmetry, market failure and joint-ventures: theory and evidence", March 1989

89/19 Wilfried VANHONACKER, Donald LEHMANN and Fareena SULTAN

"Combining related and sparse data in linear regression models", Revised March 1989

89/20 Wilfried VANHONACKER and Russell WINER

"A rational random behavior model of choice", Revised March 1989

89/21 Arnoud de MEYER and Kasra FERDOUS

"Influence of manufacturing improvement programmes on performance", April 1989

89/22 Manfred KETS DE VRIES and Sydney PERZOW

"What is the role of character in psychoanalysis? April 1989