"PRICING STRATEGIES IN MARKETS WITH DYNAMIC ELASTICITIES"

by

Philip M. PARKER

N° 91/46/MKT

* Assistant Professor of Marketing, INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France.

Printed at INSEAD, Fontainebleau, France.
PHILIP PARKER
INSEAD
Fontainebleau, France

August, 1991

* Assistant Professor of Marketing, INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France; thanks are owed to Jehoshua Eliashberg and Wilfried Vanhonacker for their comments on earlier drafts of this research and to Katrina Maxwell for her excellent research support.
Pricing Strategies in Markets with Dynamic Elasticities

ABSTRACT

This paper approaches strategic pricing over the product lifecycle while considering the impact of dynamic price elasticities. Extending the work of Simon (1979), a general optimal control formulation is proposed which relies on functional forms which have empirical foundations and can be calibrated in a managerial context. In addition to typical skimming and penetration strategies, dynamic elasticities can lead to "saw tooth" strategies; optimal prices may, for example, decrease, then increase, then decrease over the lifecycle. Several normative results, based on numerical simulations, are presented and compared to those found in the literature.

Key Words: Pricing, Diffusion, Durable Products, Dynamic Elasticities
When a firm's objectives include maximizing profits over current and future periods, a number of factors complicate the pricing decision. A stream of normative literature has considered optimal pricing problems when sales follow a product lifecycle, or new product diffusion process, while costs decline as a function of cumulative production, or an experience curve, and the firm discounts future cash flows. More elaborate refinements include cases when pricing strategies are affected by repeat purchases, the degree to which an innovation can be copied, or when the demand for a given product is affected by the income distribution of the market potential. Competition, or the threat of new entrants into a monopolistic market, has also been considered (see the literature reviews in Simon 1989, Chapters 5 and 6; Hanssens, Parsons, and Shultz 1990, Chapter 8, and Mahajan, Muller and Bass 1990).

The literature has generally assumed that price elasticities are either constant or proportional to price, but do not vary systematically over the product lifecycle. A number of theoretical and empirical studies have suggested however, that brand or category-level price elasticities can follow any number of paths (see Simon 1979, 1989, Chapter 5, and Lilien and Yoon 1988 for literature reviews). Based on theoretical considerations, Mickwitz (1959) contends that elasticities should increase then decrease, while Parsons (1975) finds that elasticities should decrease. Nagle (1987, pp. 152-153) notes that elasticities are lowest during early phases of the product lifecycle and reach their maximum levels during the maturity/decline phases. Tellis (1988) concurs by arguing that few competitive substitutes exist during early stages of the lifecycle and that consumers may be ill-informed of competitive alternatives. While hypothesized paths may vary based on one considering either brand-level or category-level elasticities, empirical studies have found an equal variety of elasticity dynamics. Simon (1979) finds that brand-level elasticities initially fall, and then increase (for household cleansers and pharmaceuticals). Liu and Hanssens (1981) find that elasticities increase over the product lifecycle for inexpensive gift items. In a meta-analysis of previous studies, Tellis (1988) reports that brand-level price elasticities also increase over the lifecycle. Lilien and Yoon (1988) find, when investigating industrial chemicals, that category sales elasticities are either stable or decline over the lifecycle. Elasticities, hereafter referred to in absolute values, have been found therefore to increase, increase then decrease, decrease, or decrease then increase over the brand and/or category lifecycle.

In this paper we extend Simon's (1979) derivation of optimal pricing strategies when elasticities vary by explicitly considering the diffusion process while also assuming situations where profits are discounted, units costs decline with cumulative production, and elasticities change, in a variety of patterns, over the time-continuous lifecycle. Although the framework proposed is fundamentally
monopolistic, dynamic elasticities allow for an atomistic consideration of competition (i.e. elasticities may vary due to changes in non-reactive substitutes or changes in consumer tastes). We focus on using functional forms which have been and can be easily calibrated in a managerial context. These forms create, however, mathematical intractabilities which are dealt with via simulation.

1. Model Formulation

In order to determine optimal pricing levels over the product lifecycle, one can formulate an optimal control model with one state variable (the sales rate) and one control variable (price). We will assume that the firm discounts future cash flows and that an experience effect acts on production costs. Demand will shift over time as a function of cumulative sales (a diffusion process) and the levels of price. Price elasticities are assumed to vary over the product lifecycle by an unspecified time function. A restrictive assumption associated with this formulation is that consumers base their decisions on current and not anticipated prices. For some products (e.g. high technology electronics), this assumption may be too restrictive (see Narasimhan 1989). The planning horizon of the firm is assumed to be finite (i.e. over a given product lifecycle) and cumulative sales in time \(t=0 \) are assumed to equal zero. The firm is assumed to maximize profits as expressed in Equation (1).

\[
\max_{P(t)} \Pi = \int_0^T e^{-rt} \left(P(t) - kX(t)^{\alpha} \right) X(t) dt
\]

subject to the constraint:

\[
\frac{dX(t)}{dt} = \dot{X}(t) = f(X) P(t)^{n(t)}
\]

where \(r \) is a constant discount rate, \(k \) is a constant initial cost, \(\alpha \) is the learning parameter on costs, \(f(x) \) is an unspecified product lifecycle or diffusion model; \(X(t) \) is the sales rate in period \(t \) and \(n(t) \) is the dynamic price elasticity of demand associated with \(P(t) \). This formulation is closely associated with those of Bass (1980), Dolan and Jeuland (1981) and Robinson and Lakhani (1975), which are generalized by Kalish (1983) in his discussion of separable demand functions. Unlike these formulations, Equation (2) considers price elasticities which can vary over the product lifecycle; as \(n(t) \) is a general form, any time path of elasticity dynamics can be considered.
Equation (2) assumes that elasticities are constant at any moment in time; the demand curve shifts over time due to $f(x)$ and will pivot depending on the values of $n(t)$.

In order to derive the optimal levels of price, the maximum principal of optimal control theory states that the solution is obtained using its Hamiltonian formulation (Kamien and Schwartz, 1983, p. 151). The Hamiltonian is, after dropping the time subscript t:

$$H(P, X, \lambda) = e^{-rt} [P - kX^{-\alpha}] f(X) P^n + \lambda f(X) P^n$$

where λ is a shadow price on the constraint having the terminal condition $\lambda(T) = 0$. The three necessary conditions associated with Equation (3) are:

$$\begin{align*}
(4) \quad & \frac{\partial H}{\partial P} = 0 \\
(5) \quad & \frac{\partial H}{\partial X} = -\dot{\lambda} \\
(6) \quad & \dot{X} = f(X) P^n
\end{align*}$$

and the second order condition on price is

$$\frac{\partial^2 H}{\partial P^2} \leq 0$$

From these conditions, one can show that the optimal changes in price, for a given period t, are given in Equation (8).1

$$\dot{P}^* = (n(n+1))^{-1} \left[n(Pn + Pn^2 - n^2kX^{-\alpha}) + nP - nP^{n+1} fX \right]$$

This differential equation indicates that changes in optimal price are affected by a firm's discount rate, unit costs driven by the experience effect, the contemporary price elasticity of demand, the first derivative of the elasticity function with respect to time, and the stage of the product lifecycle (diffusion rate). Relaxing the assumption of constant price elasticities creates intractabilities which prevent a closed form solution of Equation (1) for optimal prices. Using the properties of Equation (8), however, one can evaluate various scenarios and, via numerical simulation, derive optimal pricing strategies.
2. Strategy Derivations

2.1 Methodology

Since optimal strategies need to be simulated, care must be taken to consider functional forms and parameter values which reflect situations which appear plausible in a managerial context. Otherwise, strategy guidelines which appear general (via numerous simulations) may reflect a range of parameter values which are not likely to be encountered in practice. Fortunately, numerous empirical studies have been conducted on new product diffusion models, learning parameters, and dynamic price elasticities. Using parameter values estimated in the literature, one can generate a number of strategies that are based on models which can be calibrated, and, therefore, implemented by managers.

We begin by specifying a sales response function which considers both diffusion and dynamic price elasticity parameters:

\[\dot{X}(t) = \left[(a + b \frac{X(t)}{M}) (M - X(t)) \right] P^c + dt + et^2 \]

where the constant diffusion parameters are \(a \) and \(b \), the dynamic elasticity parameters are \(c \), \(d \), and \(e \), and where \(M \) is a constant market potential; \(X(t) \) is cumulative adoptions up to but not including time \(t \), \(P(t) \) is the price at time \(t \), and \(\dot{X}(t) \) is adoptions in time \(t \). Equation (9) is a modified version of the first purchase model proposed by Bass (1969, 1980) which allows for dynamic elasticities. The Bass model has seen wide application in fitting the sales of durable products, agricultural innovations, medical innovations and various telecommunications services (see Mahajan, Muller and Bass for a review of Bass model extensions and applications). In separate analyses, empirical applications of Equation (9) have proved effective in fitting the purchases of a number of consumer durables. The separable functional form allows prices to affect both the coefficient of innovation or external influence (a) and the coefficient of imitation or external influence (b). As elasticities are dynamic, the affect of price on the diffusion parameters will vary over time; in all cases, the relative importance of the coefficient of external influence declines over time. While one might wish to consider non-separable forms (as discussed by Kalish 1983) or those in which price affects the market potential (Kalish 1985, Horsky 1990), similar intractabilities arise when elasticities are allowed to systematically vary over the lifecycle. The application of Equation (9) is used, therefore, for illustrative purposes while understanding that this form has been found acceptable for some product categories, but may not prove the most appropriate for others.
A two-step procedure is used to generate optimal price paths given the response function in Equation (10): (1) for any starting price, Equation (8) is simulated for a given set of parameter values and (2) an iterative wide area grid search coupled with a steepest gradient method is used to determine the starting price that maximizes profits over the time periods considered.3 A manager might set the starting price to be the highest expected reservation price. For a given set of parameter values, the initial price selected generally affects the magnitude but not the functional form (path) of the optimal prices over time.

Based on independent empirical tests of Equation (9) on a number of consumer durable goods categories, and the meta-analysis reported by Tellis (1988) who finds average elasticities of durables to equal -2, elasticities are allowed to vary between -4 and -1. Based on the meta-analysis of empirical studies by Sultan, Farley and Lehmann (1990) who report an average value of .03 for the coefficient of external influence (a) and .38 for the coefficient of internal influence (b), the diffusion parameters are allowed to vary between .01 and .9. The learning parameter is assumed to vary between 0 and .6, based on values reported in Simon (1989, p. 128) for household durable products (actual values reported vary between .09 and .54). Discount rates investigated vary between .01 (non-myopic management) and .25 (myopic management). Various price elasticity dynamics can be considered:

Case 1. elasticities begin high, then decline, then increase
Case 2. elasticities begin low, then increase, then decline
Case 3. elasticities begin high, then decline
Case 4. elasticities begin low, then increase
Case 5. elasticities are constant.

As the constant elasticity case, Case 5, has been considered in the literature, the reader is referred to the work cited above; simulations of Equation (8) for the constant elasticity case (e.g. n(t)=-2) generates the same recommendations. Likewise, only Cases 1 and 2 are reported here because they generalize Cases 3 and 4 respectively. Rather than report all simulations for Cases 1 and 2, we will focus on the sensitivity of particular pricing strategies to extreme changes (though within a realistic range) of particular parameters (say, the corporate discount rate). The goal is to illustrate the relative importance of each factor (diffusion, learning curve, dynamic elasticities, and discounting) over the ranges of parameter values that are likely to be encountered in practice. Specifically, 56 scenarios (2X2X2X7 design) across the following factors are considered in order to illustrate the impact of each:
- Elasticity Dynamics: Case 1 and Case 2
- Learning Curve Effects: $\alpha = 0$, and $\alpha = .6$
- Diffusion Effects: $a = .01 < b = .90$, and $a = .90 > b = .01$
- Discount Effect: $r = .01$, $r = .03$, $r = .05$, $r = .10$, $r = .15$, $r = .20$ and $r = .25$

The value of discount rates range from nearly zero (nonmyopic) to a relatively high level, $r = .25$ (myopic).

2.2 Pricing Strategies

Figure 1 provides a summary of simulations which illustrate various managerial situations, depending on the elasticity dynamics, the diffusion process and learning on costs. While magnitudes can be greatly affected, the functional forms simulated are generally invariant to the level of discount rates studied. Cell 1 shows, for example, the difference between a low and high discount rate on pricing. For the remaining cells only one function is shown per cell for greater clarity in presentation. Across cells, eight industry situations are represented. For example, in Cells 1, 2, 3 and 4 there is no learning on costs which might reflect cost dynamics for consumer non-durables (e.g. pharmaceuticals, frequently purchased products, etc.). Within these four cells, Cells 2 and 4 represent situations where diffusion is driven via a Fourt and Woodlock (1960) trial process reflecting low consumer learning requirements (a new "me-too" entrant into a mature category). Cells 5 and 7, for example, reflect typical situations for consumer durables where diffusion effects and learning effects on costs are high; the difference between Cells 5 and 7 is the effect of elasticity dynamics. Cells 1, 2, 5, and 6 (Case 1), reflect situations whereby consumers are first highly sensitive to price changes, followed by a period where the product is perceived as a necessity, followed by a period where consumers become price sensitive (perhaps due to non-reactive competitive substitutes) toward the end of the lifecycle. Cells 3, 4, 7, and 8 might reflect situations when a product, during the middle of its lifecycle, faces some shock which is reflected by high price elasticities (e.g. a short-lived substitute, a period of intense competition followed by a shake-out or a well-publicized product liability problem).

Comparing the simulations to results derived for the non-dynamic elasticity case (e.g. as reported in literature cited above), a number of common and different strategies emerge. A number of intuitive results are generally observed concerning the magnitude of prices, including (1) high discount rates generally lead to higher prices early on in the lifecycle compared to lower discount rates, (2) relatively larger innovation/external diffusion influences lead to higher prices early on, and lower prices later in the lifecycle, compared to relatively larger imitation/internal influences.
(e.g. comparing Cells 7 and 8), (3) higher learning rates generally lead to lower absolute prices in the beginning and over the remaining lifecycle, compared to low or no learning rates (e.g. comparing Cells 1 and 5), (4) higher elasticities lead to lower prices compared to lower elasticities.

In his study of price elasticity dynamics, Simon (1979) finds that a price penetration strategy was optimal in a specific case. Two additional strategies have been found optimal in the literature studying new product diffusion using static/proportional elasticities (e.g. Kalish, 1983, Bass and Bultez, 1982, Dolan and Jeuland, 1981):
- decreasing prices (skimming)
- increasing then deceasing.

The time dynamics of elasticities, and the interaction with the three other factors yields, however, a number of strategies not commonly found in the literature.

Comparing, for example, Cells 1 and 3 demonstrates that dynamic elasticities can dramatically affect the optimal time path (functional form) of optimal prices. Two additional strategies are derived here based on the consideration of elasticity dynamics:
- decreasing, then increasing, then decreasing (Cell 5)
- decreasing, then increasing (Cells 3, 4 and 8)

Similar "saw tooth" or non-monotonic pricing strategies, as shown in Cell 5, can be envisioned for more complex elasticity dynamics, including cubic or cyclical time paths. Given a quadratic form of elasticity dynamics, a number of general guidelines can be proposed:
- aside from absolute magnitudes, for products having no or a sufficiently low level of learning on costs, diffusion effects (the values of a or b) will have little impact on the time path of optimal prices (comparing Cells 1 and 2, or Cells 3 and 4);
- for products having high learning effects on costs, the time path of prices can be sensitive to the diffusion effects, especially when elasticities follow the pattern in Case 2 (e.g. comparing Cells 7 and 8);
- in situations where elasticities begin low and then increase during the early phases of the lifecycle, price skimming will generally be optimal (Cells 3, 4 and 8); only the combination of learning on costs being high, and imitation/internal influences being large will imply price penetration being optimal (Cell 7).
- in situations where elasticities are high at the end of the lifecycle after a period of being low, prices will decline (Cells 1, 2, 3 or 4), irrespective of the discount rate, diffusion effect, or learning rate on costs.
in situations where elasticities begin high and then decline during the early phases of the lifecycle, optimal pricing patterns are increasing then decreasing (Cells 1, 2 and 6), or "saw toothed", decreasing, increasing, then decreasing (Cell 5).

- in situations where residual markets have low elasticities later in the lifecycle after a period of being high, prices should increase (Cells 3, 4, 7 and 8);

The last two conclusions provide interesting insight to pricing strategies in declining markets. Cell 5 shows a saw tooth strategy where firms, facing Case 1, will initially follow the learning curve (skimming) up to a point where low elasticities dominate pricing policies; prices fall when elasticities begin to increase. Cells 3, 4 and 8 show situations where firms first skim the market. As elasticities increase, prices and sales fall to low levels (or firms, may in actuality temporarily exit the market). When elasticities decline to lower levels, prices and sales increase, as if in a new cycle. Only the combination of high learning on costs, and high imitation/internal diffusion effects result in classical price penetration strategies.

3. Conclusions and Future Extensions

Simon (1989, p.124) notes that the issue of elasticity dynamics "is empirically not well researched." This paper illustrates the importance of knowing such dynamics for firms formulating optimal pricing strategies. Both the time path and magnitude of pricing can be greatly affected by the evolution of elasticities. The simulation approach provides original insights in dynamic pricing strategies while reasonably handling mathematical intractabilities generated by models which can be calibrated in practice. In particular, simulations reveal conditions when typically prescribed skimming or penetration strategies will not be optimal. "Saw tooth", or non-monotonic policies appear optimal under certain realistic situations. Though based on a monopolistic formulation, the simulations capture situations of atomistic competition or industries which can coordinate pricing activities across firms. Logical extensions of this research include the explicit consideration of non-cooperative competition, additional marketing mix elements, and industries having particular purchasing behaviour (e.g. repeat purchase goods) or cost structures (e.g. both fixed and variable). Finally, attempts to generalize the results to all functional forms or parameter values may prove worthwhile.
FOOTNOTES

1. A more detailed discussion of the derivation of Equation 8 is available in Appendix A.

2. A summary of empirical tests of Equation 9 on a variety of consumer durables is available upon request.

3. The software package SimGauss was used to numerically solve Equation 8; the constant k was set to equal 30; M was set to equal 100000. Inelastic ranges with $n(t)>-1$ are not reported as these result in strategies of increasing prices.

4. Kalish (1983) notes the possibility of this pattern in cases of positive discount rates and learning effects on costs. Cells 5 shows that this pattern depends on costs dynamics if elasticities follow the pattern in Case 1 (high elasticities, then low, then high), and a strong diffusion effect ($a < b$).
REFERENCES

Figure 1. Optimal Price Paths Under Dynamic Elasticities

<table>
<thead>
<tr>
<th>Elasticity Dynamics:</th>
<th>Elasticity Dynamics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE 1: High, Low, High</td>
<td>CASE 2: Low, High, Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell</th>
<th>a (b)</th>
<th>a) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>r=0.2</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>r=0.1</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Learning:
No Learning:

r=0.1

Scales used approximate actual simulated values.
The following provides details on the calculation of equation 8 in the paper. Recalling the Hamiltonian formulation (Equation 3 in the paper):\(^1\)

\[
H = e^{-\tau}(P - kX^\alpha) f(X) P^n + \lambda f(x) P^n
\]

Applying equation 4 to equation 3 we obtain (dropping the time subscript).

\[
\frac{\partial H}{\partial P} = (n+1) e^{-\tau} f(x) P^n - nkx^\alpha e^{-\tau} f(x) P^{n-1} + n\lambda f(x) P^{n-1} = 0
\]

or, rearranging (9),

\[
e^{-\tau} f(x) P^{n-1} [(n+1) P - nkx^\alpha + n\lambda e^\tau] = 0
\]

Since \(e^{-\tau} f(x) P^{n-1} > 0\), we obtain,

\[
(n+1) P - nkx^\alpha + n\lambda e^\tau = 0
\]

or, rearranging (11),

\[
P^*(t) = \frac{n}{n+1} \left(kX^\alpha - \lambda e^\tau \right) > 0
\]

or, rearranging (11)

\[
\lambda^* = \frac{nkX^\alpha - (n+1)P}{ne^\tau}
\]

or, rearranging

\[
\lambda^* = e^{-\tau} kX^\alpha \cdot \frac{(n+1)}{n} P e^\tau
\]

or, rearranging (14)

\[
\lambda^* = e^{-\tau} kX^\alpha \cdot Pe^\tau - n^{-1} Pe^{-\tau}
\]

Differentiating (15), one obtains (note: \(n(t)\) is time dynamic):

\[
\dot{\lambda}^* = -e^{-\tau} \alpha kX^{-1-0} \dot{X} - rX^\alpha e^\tau - \dot{P} e^{-\tau} + rPe^{-\tau} - \left(\frac{-\dot{P} + \ddot{P}n}{n^2} \right) e^{-\tau} - re^{-\tau} \frac{P}{n}
\]

\[
1. \quad \text{We use the discounted Hamiltonian, without loss of generality, as opposed to the current value Hamiltonian.}
\]
or, rearranging (16), yields

\[(17) \quad \dot{\lambda}^* = e^{-r\left[\alpha kX^{-\alpha-1} \dot{X} + rkX^{-\alpha} + \dot{P} - rP - \dot{n} P/n^2 + \dot{P}/n - rP/n \right]}.
\]

When applying equation 5 to equation 3, one obtains

\[(18) \quad \frac{\partial H}{\partial X} = e^{-rt} f_x P^{n+1} - e^{-rt} k P^n \left[X^{-\alpha} f_x - \alpha X^{-\alpha-1} f(X)\right] + \lambda f_x P^n
\]
or, rearranging,

\[(19) \quad \frac{\partial H}{\partial X} = -\dot{\lambda}^* = e^{-rt} \left[f_x P^{n+1} - kX^{-\alpha} f_x P^n + \alpha kX^{-\alpha-1} f(X) P^n + \lambda f_x P^n e^{rt}\right].
\]

Substituting (15) and (17) into (19) and rearranging and cancelling terms yields

\[
\dot{P}^* = r \left(\frac{P_n + P_{n+2} - n^2 kX^{-\alpha}}{n(n+1)}\right) + \dot{n} P - n P^{n+1} f_x
\]

\[(8) \quad \text{This is the function reported as Equation 8 in the paper.} \]
1988

88/01 Michael LAWRENCE and Spyros MAKRIDAKIS

88/02 Spyros MAKRIDAKIS
"Predicting recessions and other turning points", January 1988.

88/03 James TEBOUL

88/04 Susan SCHNEIDER

88/05 Charles WYPLOSZ

88/06 Reinhard ANGELMAR

88/07 Ingegnar DIERICKX and Karel COOL

88/08 Reinhard ANGELMAR and Susan SCHNEIDER

88/09 Bernard SINCLAIR-DESGAGNÉ

88/10 Bernard SINCLAIR-DESGAGNÉ

88/11 Bernard SINCLAIR-DESGAGNÉ
"When stationary strategies are equilibrium bidding strategy: The single-crossing property", February 1988.

88/12 Spyros MAKRIDAKIS
"Business firms and managers in the 21st century", February 1988

88/13 Manfred KETS DE VRIES
"Alexithymia in organizational life; the organization man revisited", February 1988.

88/14 Alain NOEL

88/15 Anil DEOLALIKAR and Lars-Hendrik RÖLLER

88/16 Gabriel HAWAWINI

88/17 Michael BURDA
"Monopolistic competition, costs of adjustment and the behavior of European employment", September 1987.

88/18 Michael BURDA

88/19 M.J. LAWRENCE and Spyros MAKRIDAKIS

88/20 Jean DERMINE, Damien NEVEN and J.F. THISSE

88/21 James TEBOUL
"De-industrialize service for quality", March 1988 (88/03 Revised).

88/22 Lars-Hendrik RÖLLER
"Proper Quadratic Functions with an Application to AT&T", May 1987 (Revised March 1988).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/34</td>
<td>Mihkel M. TOMBAK</td>
<td>"Flexibility: an important dimension in manufacturing", June 1988.</td>
</tr>
<tr>
<td>88/36</td>
<td>Vikas TIBREWALA and Bruce BUCHANAN</td>
<td>"A Predictive Test of the NBD Model that Controls for Non-stationarity", June 1988.</td>
</tr>
</tbody>
</table>
Philippe NAERT and Piet VANDEN ABBEELE

88/48 Michael BURDA

88/49 Nathalie DIERKENS

88/50 Rob WEITZ and Arnoud DE MEYER

88/51 Rob WEITZ

88/52 Susan SCHNEIDER and Reinhard ANGELMAR

88/53 Manfred KETS DE VRIES

88/54 Lars-Hendrik RÖLLER and Mikkel M. TOMBAK

88/55 Peter BOSSAERTS and Pierre HILLION

88/56 Pierre HILLION

88/57 Wilfried VANHONACKER and Lydia PRICE

88/58 B. SINCLAIR-DESGAGNÉ and Mikkel M. TOMBAK

88/59 Martin KILDUFF

88/60 Michael BURDA

88/61 Lars-Hendrik RÖLLER

88/62 Cynthia VAN HULLE, Theo VERMAELEN and Paul DE WOUTERS

88/63 Fernando NASCIMENTO and Wilfried R. VANHONACKER

88/64 Kasra FERDOWS

88/65 Arnoud DE MEYER and Kasra FERDOWS
"Quality up, technology down", October 1988.

88/66 Nathalie DIERKENS
"A discussion of exact measures of information asymmetry: the example of Myers and Majluf model or the importance of the asset structure of the firm", December 1988.

88/67 Paul S. ADLER and Kasra FERDOWS

89/01 Joyce K. BYRER and Tawfik JELASSI

89/02 Louis A. LE BLANC and Tawfik JELASSI
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/09</td>
<td>Damien NEVEN, Carmen MATUTES and Marcel CORSTIENS</td>
<td>"Brand proliferation and entry deterrence", February 1989.</td>
<td>89/19</td>
</tr>
<tr>
<td>89/12</td>
<td>Wilfried VANHONACKER</td>
<td>"Estimating dynamic response models when the data are subject to different temporal aggregation", January 1989.</td>
<td>89/22</td>
</tr>
<tr>
<td>89/14</td>
<td></td>
<td></td>
<td>89/24</td>
</tr>
</tbody>
</table>
89/25 Roger BETANCOURT and David GAUTSCHI
"Two essential characteristics of retail markets and their economic consequences" March 1989.

89/26 Charles BEAN, Edmond MALINVAUD, Peter BERNHOLZ, Francesco GIAV AZZI and Charles WYPLOSZ

89/27 David KRACKHARDT and Martin KILDUFF

89/28 Martin KILDUFF

89/29 Robert GOGEL and Jean-Claude LARRECHE

89/30 Lars-Hendrik ROLLER and Mihkel M. TOMBAK

89/31 Michael C. BURDA and Stefan GERLACH

89/32 Peter HAUG and Tawfik JELASSI

89/33 Bernard SINCLAIR-DESGAGNE

89/34 Sumanta GHOSHAL and Nittin NOHRIA

89/35 Jean DERMINE and Pierre HILLION

89/36 Martin KILDUFF

89/37 Manfred KETS DE VRIES

89/38 Manfred KETS DE VRIES

89/39 Robert KORAJCZYK and Claude VIALLET
"An empirical investigation of international asset pricing", (Revised June 1989).

89/40 Balaji CHAKRAVARTHY
"Management systems for innovation and productivity", June 1989.

89/41 B. SINCLAIR-DESAGNAGNE and Nathalie DIERKENS

89/42 Robert ANSON and Tawfik JELASSI

89/43 Michael BURDA

89/44 Balaji CHAKRAVARTHY and Peter L'ORANGE

89/45 Rob WEITZ and Arnoud DE MEYER

89/46 Marcel CORSTJENS, Carmen MATUTES and Damien NEVEN

89/47 Manfred KETS DE VRIES and Christine MEAD

89/48 Damien NEVEN and Lars-Hendrik ROLLER
89/49 Jean DERMINÉ

89/50 Jean DERMINÉ

89/51 Spyros MAKRIDAKIS

89/52 Arnoud DE MEYER

89/53 Spyros MAKRIDAKIS

89/54 S. BALAKRISHNAN
and Mitchell KOZA

89/55 H. SCHUTTE

89/56 Wilfried VANHONACKER
and Lydia PRICE

89/57 Taekwon KIM,
Lars-Hendrik RÖLLER
and Mihkel TOMBAK

89/58 Lars-Hendrik RÖLLER
and Mihkel TOMBAK

89/59 Manfred KETS DE VRIES,
Daphne ZEVAIDI,
Alain NOEL and
Mihkel TOMBAK

89/60 Enver YUCESAN and
Lee SCHRUBEN
"Simulation graphs for design and analysis of discrete event simulation models", October 1989.

89/61 Susan SCHNEIDER and
Arnoud DE MEYER

89/62 Arnoud DE MEYER

89/63 Enver YUCESAN and
Lee SCHRUBEN

89/64 Enver YUCESAN and
Lee SCHRUBEN

89/65 Soumitra DUTTA and
Piero BONISSONE

89/66 B. SINCLAIR-DESAGNÉ

89/67 Peter BOSSAERTS and
Pierre HILLION

90/01 B. SINCLAIR-DESAGNÉ

90/02 Michael BURDA

90/03 Arnoud DE MEYER

90/04 Gabriel HAWAWINI and
Eric RAJENDRA

90/05 Gabriel HAWAWINI and
Bertrand JACQUILLAT
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Conference Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>90/06</td>
<td>Gabriel HAWAWINI and Eric RAJENDRA</td>
<td>"Integration of European Equity Markets: Implications of Structural Change for Key Market Participants to and Beyond 1992"</td>
<td>January 1990.</td>
</tr>
<tr>
<td>90/09</td>
<td>Alberto GIOVANNINI and JaWON PARK</td>
<td>"Capital Controls and International Trade Finance"</td>
<td>January 1990.</td>
</tr>
<tr>
<td>90/10</td>
<td>Joyce BRYER and Tawfik JELASSI</td>
<td>"The Impact of Language Theories on DSS Dialog"</td>
<td>January 1990.</td>
</tr>
<tr>
<td>90/13</td>
<td>Soumitra DUTTA and Shashi SHEKHAR</td>
<td>"Approximate Reasoning about Temporal Constraints in Real Time Planning and Search"</td>
<td>January 1990.</td>
</tr>
<tr>
<td>90/15</td>
<td>Arnoud DE MEYER, Dirk DESCHOUVERMEESTER, Rudy MOENAERT and Jan BARBE</td>
<td>"The Internal Technological Renewal of a Business Unit with a Mature Technology"</td>
<td>January 1990.</td>
</tr>
<tr>
<td>90/19</td>
<td>Beth JONES and Tawfik JELASSI</td>
<td>"The Effect of Compuer Intervention and Task Structure on Bargaining Outcome", February 1990.</td>
<td></td>
</tr>
<tr>
<td>90/22</td>
<td>Ingo WALTER</td>
<td>"European Financial Integration and Its Implications for the United States", February 1990.</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Code</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>"A Discussion of Correct Measures of Information Asymmetry"</td>
<td>Nathalie DiERKENS</td>
<td>FIN/AC</td>
<td>90/29</td>
</tr>
<tr>
<td>"The Expected Utility of Portfolio of Assets"</td>
<td>Lars Type NIELSEN</td>
<td>FIN/EP</td>
<td>90/30</td>
</tr>
<tr>
<td>"What Determines U.S. Retail Margins?"</td>
<td>David GAUTSCHI and Roger BETANCOURT</td>
<td>MKT/EP</td>
<td>90/31</td>
</tr>
<tr>
<td>"Information Asymmetry, Adverse Selection and Joint-ventures: Theory and Evidence"</td>
<td>Srinivasan BALAKRISHNAN and Mitchell KOZA</td>
<td>FIN/SM</td>
<td>90/32</td>
</tr>
<tr>
<td>"The Role of Rites of Integration in Service Delivery"</td>
<td>Caren SIEHL, David BOWEN and Christine PEARSON</td>
<td>OB</td>
<td>90/33</td>
</tr>
<tr>
<td>"The Gains from European Banking Integration, a Call for a Pro-Active Competition Policy"</td>
<td>Jean DERMINE</td>
<td>FIN/EP</td>
<td>90/34</td>
</tr>
<tr>
<td>"Changing Uncertainty and the Time-Varying Risk Premia in the Term Structure of Nominal Interest Rates"</td>
<td>Jae Won PARK</td>
<td>EP</td>
<td>90/35</td>
</tr>
<tr>
<td>"An Empirical Investigation of Manufacturing Strategies in European Industry"</td>
<td>Arnaud DE MEYER</td>
<td>TM</td>
<td>90/36</td>
</tr>
<tr>
<td>"Executive Information Systems: Developing an Approach to Open the Possibles"</td>
<td>William CATS-BARIL</td>
<td>TM/OB/SM</td>
<td>90/37</td>
</tr>
<tr>
<td>"Managerial Decision Behaviour and the Estimation of Dynamic Sales Response Models"</td>
<td>Wilfried VANHONACKER</td>
<td>MKT</td>
<td>90/38</td>
</tr>
<tr>
<td>"An Evaluation and Selection Methodology for Expert System Shells"</td>
<td>Louis LE BLANC and Tawfiq JELASSI</td>
<td>TM</td>
<td>90/39</td>
</tr>
<tr>
<td>"Leaders on the Couch: The case of Roberto Calvi"</td>
<td>Manfred KETS DE VRIES</td>
<td>OB</td>
<td>90/40</td>
</tr>
<tr>
<td>"Capital Market Reaction to the Announcement of Interstate Banking Legislation"</td>
<td>Gabriel HAWAWINI, Ihzak SWARY and Ik HWAN JANG</td>
<td>FIN/EP</td>
<td>90/41</td>
</tr>
<tr>
<td>"Cross-Validating Regression Models in Marketing Research"</td>
<td>Joel STECKEL and Wilfried VANHONACKER</td>
<td>MKT</td>
<td>90/42</td>
</tr>
<tr>
<td>"Equity Risk Premia and the Pricing of Foreign Exchange Risk"</td>
<td>Gilles AMADO, Claude FAUCHEUX and Andre LAURENT</td>
<td>OB</td>
<td>90/43</td>
</tr>
<tr>
<td>"Integrating Case Based and Rule Based Reasoning: The Possibilistic Connection"</td>
<td>Soumitra DUTTA and Pierre BONISSONE</td>
<td>TM</td>
<td>90/45</td>
</tr>
<tr>
<td>"Exponential Smoothing: The Effect of Initial Values and Loss Functions on Post-Sample Forecasting Accuracy"</td>
<td>Spyros MAKRIDAKIS and Michele HIRON</td>
<td>TM</td>
<td>90/46</td>
</tr>
<tr>
<td>"Improper Sampling in Natural Experiments: Limitations on the Use of Meta-Analysis Results in Bayesian Updating"</td>
<td>Lydia PRICE and Wilfried VANHONACKER</td>
<td>MKT</td>
<td>90/47</td>
</tr>
<tr>
<td>"The Information in the Term Structure of Interest Rates: Out-of-Sample Forecasting Performance"</td>
<td>Jae WON PARK</td>
<td>EP</td>
<td>90/48</td>
</tr>
<tr>
<td>"Price and Trade Effects of Exchange Rates Fluctuations and the Design of Policy Coordination"</td>
<td>Soumitra DUTTA, Daniel COHEN and Charles WYPLOsz</td>
<td>EP</td>
<td>90/49</td>
</tr>
<tr>
<td>"Approximate Reasoning by Analogy to Answer Null Queries"</td>
<td></td>
<td></td>
<td>90/50</td>
</tr>
</tbody>
</table>

Revised: January 1990.
<table>
<thead>
<tr>
<th>ISBN</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
<th>Journals</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>90/77</td>
<td>Wilfried VANNHONACKER</td>
<td>"Testing the Keych Scheme of Sales Response to Advertising: An Aggregation-Independent Autocorrelation Test", October 1990</td>
<td>90/89</td>
<td>OB</td>
<td>"The CEO Who Couldn't Talk Straight and Other Tales from the Board Room," December 1990</td>
</tr>
<tr>
<td>90/79</td>
<td>Anil GABA</td>
<td>"Inferences with an Unknown Noise Level in a Bernoulli Process", October 1990</td>
<td>91/01</td>
<td>TM</td>
<td>"Operational Research Can Do More for Managers Than They Think!" January 1991</td>
</tr>
<tr>
<td>90/85</td>
<td>Avijis GHOSH and Vikas TIBREWALA</td>
<td>"Optimal Timing and Location in Competitive Markets," November 1990</td>
<td></td>
<td>OB</td>
<td></td>
</tr>
<tr>
<td>90/86</td>
<td>Olivier CADOT and Bernard SINCLAIR-DESGAGNE</td>
<td>"Prudence and Success in Politics," November 1990</td>
<td></td>
<td>OB</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Author(s)</td>
<td>Title</td>
<td>Pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/07</td>
<td>Olivier CADOT</td>
<td>"Lending to Insolvent Countries: A Paradoxical Story," January 1991</td>
<td>91/19 Vikas TIBREWAŁA and Bruce BUCHANAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/08</td>
<td>Charles WYPLOSZ</td>
<td>"Post-Reform East and West: Capital Accumulation and the Labour Mobility Constraint," January 1991</td>
<td>91/20 Darius SABAVALA and Vikas TIBREWAŁA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/09</td>
<td>Spyros MAKRIDAKIS</td>
<td>"What can we Learn from Failure?", February 1991</td>
<td>91/21 Sumanta GHOSHAL, Harry KORINE and Gabriel SZULANSKI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/12</td>
<td>Albert ANGEHRN</td>
<td>"Interpretative Computer Intelligence: A Link between Users, Models and Methods in DSS", February 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/14</td>
<td>Roger BETANCOURT and David GAUTSCHI</td>
<td>"The Output of Retail Activities: French Evidence", February 1991</td>
<td>91/25 Luk N. VAN WASSENHOVE and Charles J. CORBETT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91/17</td>
<td>Dirk CATTRYSSE, Roelof KUIK, Marc SALOMON and Luk VAN WASSENHOVE</td>
<td>"Heuristics for the Discrete Lotsizing and Scheduling Problem with Setup Times", March 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
91/07 Olivier CADOT
"Leading to Insolvent Countries: A Paradoxical Story," January 1991

91/08 Charles WYPLOSZ
"Post-Reform East and West: Capital Accumulation and the Labour Mobility Constraint," January 1991

91/09 Spyros MAKRIDAKIS
"What can we Learn from Failure?", February 1991

91/10 Luc Van WASSENHOVE and C. N. POTTS

91/11 Luc VAN WASSENHOVE et al.
"Multi-Item Lotsizing in Capacitated Multi-Stage Serial Systems", February 1991

91/12 Albert ANGEHRN
"Interpretative Computer Intelligence: A Link between Users, Models and Methods in DSS", February 1991

91/13 Michael BURDA

91/14 Roger BETANCOURT and David GAUTSCHI
"The Output of Retail Activities: French Evidence", February 1991

91/15 Manfred F.R. KETS DE VRIES
"Exploding the Myth about Rational Organisations and Executives", March 1991

91/16 Arnoud DE MEYER and Kasra FERDOWS et al.

91/17 Dirk CATTRYSSE, Roelof KUIK, Marc SALOMON and Luk VAN WASSENHOVE
"Heuristics for the Discrete Lotsizing and Scheduling Problem with Setup Times", March 1991

91/18 C.N. POTTS and Luk VAN WASSENHOVE

91/19 Vikas TIBREWALA and Bruce BUCHANAN
"An Aggregate Test of Purchase Regularity", March 1991

91/20 Darius SABAVALA and Vikas TIBREWALA
"Monitoring Short-Run Changes in Purchasing Behaviour", March 1991

91/21 Sumanta GHOSHAL, Harry KORINE and Gabriel SZULANSKI
"Internal Communication within MNCs: The Influence of Formal Structure Versus Integrative Processes", April 1991

91/22 David GOOD, Lars-Hendrik RÖLLER and Robin SICKLES

91/23 Spyros MAKRIDAKIS and Michèle HIBON
"Exponential Smoothing: The Effect of Initial Values and Loss Functions on Post-Sample Forecasting Accuracy", April 1991 (Revision of 90/46)

91/24 Louis LE BLANC and Tawfik JELASSI

91/25 Luk N. VAN WASSENHOVE and Charles J. CORBETT

91/26 Luk N. VAN WASSENHOVE and C.N. POTTS
"Single Machine Scheduling to Minimize Total Late Work", April 1991

91/27 Nathalie DIERKENS
"A Discussion of Correct Measures of Information Asymmetry: The Example of Myers and Majluf’s Model or the Importance of the Asset Structure of the Firm", May 1991

91/28 Philip M. PARKER
"A Note on: 'Advertising and the Price and Quality of Optometric Services', June 1991

91/29 Tawfik JELASSI and Abbas FOROUGHI
91/30 Wilfried R. VANHONACKER and Lydia J. PRICE
MKT "Using Meta-Analysis Results in Bayesian Updating: The Empty Cell Problem", June 1991

91/31 Rezaul KABIR and Theo VERMAELEN
FIN "Insider Trading Restrictions and the Stock Market", June 1991

91/32 Susan C. SCHNEIDER

91/33 Michael C. BURDA and Michael FUNKE
EP "German Trade Unions after Unification - Third Degree Wage Discriminating Monopolists?", June 1991

91/34 Jean DERMIN
FIN "The BIS Proposal for the Measurement of Interest Rate Risk, Some Pitfalls", June 1991

91/35 Jean DERMIN
FIN "The Regulation of Financial Services in the EC, Centralization or National Autonomy?", June 1991

91/36 Albert ANGHEHRN

91/37 Ingo WALTER and Hugh THOMAS

91/38 Ingo WALTER and Anthony SAUNDERS
EP "National and Global Competitiveness of New York City as a Financial Center", August 1991

91/39 Ingo WALTER and Anthony SAUNDERS

91/40 Luk VAN WASSENHOVE, Dirk CATTRYSSE and Marc SALOMON

91/41 Luk VAN WASSENHOVE, M.Y. KOVALYOU and C.N. POTTS
TM "A Fully Polynomial Approximation Scheme for Scheduling a Single Machine to Minimize Total Weighted Late Work", August 1991

91/42 Rob R. WEITZ and Tawfik JELASSI

91/43 Sumantra GHOSHAL and Christopher BARTLETT
SM "Building Transnational Capabilities: The Management Challenge", September 1991

91/44 Sumantra GHOSHAL and Nitin NOHRIA
SM "Distributed Innovation in the 'Differentiated Network' Multinational", September 1991

91/45 Philip M. PARKER