"THE NATURAL DRIFT
(WHAT HAPPENED TO OPERATIONAL RESEARCH?)*

by

Charles CORBETT*
and
Luk VAN WASSENHOVE**

N° 92/25/TM

* INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France.

** Professor of Operations Management and Operations Research, INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France.
The Natural Drift
(What Happened to Operational Research?)

Charles Corbett
Ph.D. student, Production and Operations Management

Luk Van Wassenhove
Professor of Operations Management and Operations Research

INSEAD, Fontainebleau, France

April 26, 1992

Abstract

The aim of this paper is to provide a critical view on the growing number of writings about the "crisis" in the OR/MS community. In contrast to most writings found in the OR/MS literature, however, this paper also considers articles from the Harvard Business Review, in order to provide a managerial perspective. Six main issues appearing in the debate are distinguished: the scientific versus technological nature of OR/MS, customer relations with users of OR/MS, the learning effect of an OR/MS study, tactical versus strategic importance of OR/MS, tool versus problem-orientation in OR/MS, and the interdisciplinary character of OR/MS. We believe that the problems signalled are due to a phenomenon of "natural drift" between the scientific and the technological natures of OR/MS, as a result of which some fundamental aspects of OR remain underdeveloped. Finding better ways of managing the natural drift is needed to turn the so-called crisis into an opportunity.
1 Introduction

It is not everyone that is born during a World War, pronounced dead at age 30, only to go through a mid-life crisis and be subject of a post mortem 14 years after, still sets out a plan for the next decade the following year and even has his or her existence proved another 4 years later as if nothing had happened. The single fact that the discipline known as Operational Research/Management Science has pulled off this remarkable feat (Ackoff (1979a), Lilien (1987), Ackoff (1987), CONDOR (1988), and White (1991) respectively) is in itself sufficient reason to take a closer look at some much-discussed aspects of its development until the present day.

Particularly (though by no means exclusively) in recent years, the Operational Research/Management Science (OR/MS) literature has shown a growing interest in the history of the field, but also a growing concern about its future. Much has been written about the future of OR/MS, claiming that future to be bright, expressing some worries or simply stating that the future is past and that OR/MS is dead. Dando & Bennett (1981) note that the dominant feeling in the British OR community evolved from very optimistic in 1963, through optimistic in 1968 and unsure in 1973, to gloomy in 1978. Given that so much is written about the “current crisis in OR/MS”, it is reasonable to ask to what extent this debate is truly justified. Surprisingly, writings on the “OR/MS crisis” generally show little or no awareness of opinions expressed in management literature. In this paper, we frequently refer to articles from the Harvard Business Review, being the management journal most read by executives, in an attempt to step outside this largely inward-looking debate. Although the Harvard Business Review obviously cannot be representative of management attitudes in general, tracing its OR/MS articles provides some interesting insights. To begin with, as Figure 1 shows, the “crisis” debate in the OR/MS literature took off soon after a dramatic drop in attention paid by HBR to OR/MS. A more superficial look through all issues of the Sloan Management Review reveals a similar pattern. However, a glance at recent editions of the journal Interfaces suffices to demonstrate that this decline in attention in general management journals does not coincide with a lack of relevant and highly successful applications of OR/MS. A graph of sales of OR-based software may also show a very different picture than Figure 1. We do not explicitly discuss the huge impact of the advent of computers, decision support systems, etc., on the discipline of OR/MS; it is surprising, however, that the drop in managerial attention
has occurred despite the vastly enhanced implementation possibilities these developments offer.

For the Harvard Business Review, all articles largely devoted to methods or applications of OR/MS, considered in a broad sense, are included in the graph. For the Journal of the Operational Research Society and Operations Research, the graph includes all papers expressing concerns similar to those raised here and those explicitly referring to the "crisis". Only JORS and OR are included, as hardly any "philosophically" oriented papers have appeared in Management Science since the early 1970s, and the other major OR/MS journals were founded considerably later than the two considered here. Including these relatively new journals would inevitably reinforce the above pattern. Obviously, this graph should not be taken too literally, but the overall picture remains suggestive. Remark that, as discussed later, it was in 1973 and more viciously in 1979, that Ackoff pronounced OR/MS dead.

Figure 1: Publication trends

The aim of this paper is to identify the main issues in the OR/MS debate, also taking into consideration the views expressed in HBR. We try to explain, in a simple way, a natural underlying cause of the development of OR/MS and the surrounding debate. The key hypothesis is outlined in Section 2, while Section 3 is devoted to a systematic but necessarily far from complete discussion of the different viewpoints found with respect to the main issues distinguished. Section 4 contains an attempt to draw the threads of Section 3 together again and to formulate some conclusions.
2 The natural drift hypothesis

Definitions of operational research and of management science generally revolve (to a certain extent) around the concept of "applying a scientific approach to practical decision problems". For this reason, we consider here the position of OR/MS with respect to this "scientific approach" and these "practical problems". In general, the relation between science and practical problems can be depicted, in a highly simplified way, as follows:

<table>
<thead>
<tr>
<th>real</th>
<th>applied</th>
<th>basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>world</td>
<td>engineering</td>
<td>sciences</td>
</tr>
</tbody>
</table>

We briefly discuss each of these domains, and the links between them, in turn; obviously the following discussion is no more than a rough outline.

The basic disciplines (BD) include disciplines as chemistry, economics, mathematics, physics, psychology, sociology etc. The highly specialised scientists working in basic disciplines are strictly knowledge-oriented, and not so concerned with direct applicability of their work. Explanatory power but also aesthetics are important value criteria here. In applied sciences (AS), the objective is to develop theories that are potentially applicable, be it to real-world problems, to other applied sciences or to a basic discipline. The orientation is still predominantly towards knowledge, but relevance to someone somewhere is now also an explicit value criterion. The basic disciplines provide knowledge for the applied sciences to use, whereas the applied sciences signal to the basic disciplines which areas are in need of deeper research.

The real world (RW) occupies the other end of the spectrum: executives, politicians, or other citizens, often face a decision situation. (Note that their problem might not be well-defined, but simply a feeling of unease.) Occupants of the real world are oriented towards tackling specific, individual problems. To help them with complex problems, there are the "engineers" (E). The term should not be taken too literally here, but is meant to include both independent consultants and people working in staff departments. Their objective is to add value where no standard simple solution exists; although they are principally problem-oriented, this includes generic problems and not only specific instances. "Engineers" draw upon the knowledge and methods accumulated in
the applied sciences, and, in turn, indicate to applied scientists which areas still need developing. Ideally, "engineers" will have sufficient knowledge of (several) applied sciences to know which approach to use for any problem they encounter, combined with a thorough knowledge of that specific approach in order to be able to apply it. They should also have a deep understanding of the real world, i.e. of how problems are embedded in complex environments.

Natural causes, such as the separation of industry and academia, and the division of institutes into more or less narrowly specialised departments with imperfect internal communication, usually lead the above figure to appear more like

```
real world E academia
```

Rather than forming a continuum with free movement of people and ideas, different domains are separated from one another but remain somehow connected. The connections are partly institutional since, for instance, students formed in academic institutes end up working in industry. It is partly accidental since, for instance, some practitioner or consultant may turn to a friend in academia for help with a tough problem. Let us look at these connections as springs, holding the system together. This situation is not serious in itself, as long as the tension in the connecting springs keeps the system balanced. However, again for many natural and obvious reasons such as the difference in dominant orientation and the different types of people employed in both realms, the system can easily be pulled out of equilibrium. Of course, the limited interaction between industry and academia reinforces this natural drift. Another reason to call this drift a natural one relates to the maturity of the field. It is quite natural for a maturing field to deepen its roots by shifting towards basic disciplines (more and more OR groups can be found in computer science or pure math departments). On the other extreme of the spectrum early techniques like linear programming become public knowledge in that they are no longer the province of OR staff groups in industry, but simply another useful internal operational tool for many groups in the company (like calculus or regression analysis). It is clear that the above effects will make the tension in some connecting springs higher than in others, causing a natural drift toward the following situation:
To bring the discussion back to OR/MS, we limit the "real world" to managerial problems (in a very broad sense of the word), and consequently replace "engineers" and "applied scientists" by "management engineers" and "management scientists" respectively. Although these terms may nowadays have different connotations, Flood (1955), in his Presidential address for the Second National Meeting of The Institute of Management Sciences, would seem to be in agreement with the above outline. In his words (p. 179), "[...] we of TIMS need not be especially concerned with the grand effort at fostering basic science—our main effort should be to adapt existing scientific knowledge, and the techniques of the scientist, for the solution of problems of management", and (p. 183) "[...] the knowledge-oriented management scientists are sure to make many discoveries eventually of value to the problem-oriented management engineers and managers".

The main objectives of "management engineers" are to help managers understand the situation they are facing and/or to provide answers to specific questions, which are not solvable by standard means, by using an analytical approach. In general the aim is to eliminate unintended irrational decisions and actions and to give the eventual decision a more "scientific" character. Dawes (1988) provides an excellent discussion of how even highly trained professionals frequently and unintentionally make errors of judgement, exposing them to systematic exploitation by others who have succeeded in banishing such irrational judgements. This is not to say that there is no room left for intuition in management. On the contrary, one aim of "management engineering" is to increase managers' understanding and thereby sharpen their intuition, eliminating irrational elements.

A "management engineer" studies the situation from an analytical point of view. He attempts to relate what he sees in the real world to concepts and frameworks developed by management scientists. Together with the managers, he performs thought experiments; they combine observation and theory, and, in doing so, attempt to grasp what is going on around them.
Having outlined the natural drift model, we can formulate the natural drift hypothesis: operational research, as born during World War II, was equivalent to “management engineering”, but, as a result of the natural drift phenomenon, is undergoing an identity crisis; the ensuing polarisation is leaving the middle ground underdeveloped.

Let us reiterate at this point that the “crisis” in the OR/MS community is not due to the amount of attention paid to the theoretical, mathematical side of the field, but rather to a relative shortage of fundamentally novel approaches and applications, such as should arise from the domain of “management engineering”. Note, also, that it is not uncommon to consider the domain of “Operations Research” as extending further than we have done here, to include at least part of both “management engineering” and “management science”. Because not all authors discussed here mean the same thing when using the expressions OR and MS, the terminology in this paper is inevitably somewhat confusing. Our aim here is definitely not to provide normative statements concerning the “true” meaning of the terms OR and MS, but simply to point out an area (the one we have labelled “management engineering”) that in our view is not developing as rapidly as it should and, as such, is at the root of the current sense of crisis.

3 The debate

This Section contains a systematic discussion of a selection of writings in the OR/MS debate, comprising both early and recent articles in the OR/MS literature and articles from the Harvard Business Review. In order to distinguish opinions from the OR/MS literature from those found in HBR, most of the references in the text include a mention of the journal involved. We focus on six main issues of the debate. The fundamental issue is, in our view:

- whether OR is a knowledge-oriented science or a problem-oriented technology.

The five other issues distinguished are each derived from this basic issue. They are:

- customer relations with users of OR/MS;
- the learning effect of an OR/MS study;
• the relevance of OR/MS at a strategic level;
• tool-orientation versus problem-orientation in OR/MS;
• the interdisciplinary nature of OR/MS.

A separate section is devoted to each of these issues.

3.1 Science or technology?

The fundamental issue in the “crisis” debate in the OR/MS literature is that of orientation of the field; all other issues boil down to the question whether OR/MS should be primarily a knowledge-oriented science or a problem-oriented technology. In the previous Section we argued that both orientations are needed for survival and growth of OR and MS. For example, research into interior point methods for speeding up Linear Programming may sometimes be purely mathematical in nature, but is of great relevance for “management engineers” when suitably implemented into novel software, and therefore an important contribution to “management science”. On the other hand, developing an enormous LP model for a particular refinery and then implementing the fastest available LP code is a typical case of “management engineering”, and signals to “management science” that there is a need for extremely fast LP codes. It is our belief that the “crisis” is partly a result of workers of both types not acknowledging the necessity and the achievements of those of the other type, and therefore not letting developments at one end be a guideline for development efforts at the other. This lack of mutual appreciation is particularly serious for workers who stand with one foot on either side of the divide. Precisely these valuable people, who could help in bridging the gap, are often the ones who fall between the cracks.

The problem of the split identity of OR/MS was already noted by Herrmann & Magee (HBR, 1953; p. 111): “As an applied science, the work is torn between two objectives: as “applied” it strives for practical and useful work; as “science” it seeks increasing understanding of the basic operation, even when the usefulness of this information is not immediately clear.” Flood (MS, 1955), quoted above, also clearly recognised this distinction. Symonds (MS, 1957; p. 126) writes: “Although operations research and management science are now closely related, they are quite different but complementary in their purposes. Operations research represents the problem-solving
objective; management science the development of general scientific knowledge. Nevertheless, much of our understanding of management science came through operations research, as well as industrial engineering and econometrics.” Drucker (HBR, 1959) recognised the need for both a knowledge-orientation (p. 30): “The first need of a management science is, then, that it respect itself sufficiently as a distinct and genuine discipline”, but also a problem-orientation (p. 148): “The second requirement for a management science is, then, that it takes its subject matter seriously.” The question whether this second requirement is adequately addressed in modern OR/MS lies at the heart of the debate. Lathrop (OR, 1959) does not view OR in itself as a science, and holds that OR workers should always be concerned with applications. King (OR, 1966) already expressed concern that this was not happening enough (p. 1177-1178): “Yet, it seems apparent that the long-range acceptance and development of the field intrinsically depends on the solution of problems in the real world and that in turn, such successes can be achieved in quantity only if we can develop and maintain a cadre of practitioners who are competent in mathematics and who display the creativity and ingenuity that is so important to the ‘real world’ aspects of problem solving.” Beged-Dov (MS, 1966) agrees: “Although they seem to pay lip-service to applications, it is quite easy to establish that the majority of the operations researchers best known in the field are openly proud of their learned papers and almost apologetic when referring to applications.” Fierce criticisms of the neglect of real-world aspects of OR are given by Woolsey (OR, 1972) and some well-known “OR is dead” papers by Ackoff (OR, 1973; JORS, 1979a,1979b). Morse (OR, 1977), one of the first Presidents of the Operations Research Society of America, signals a trend away from the real world (p. 188): “But if we stick to our original aim of matching our models to reality, rather than trying to make reality fit the preferred model, we can contribute in important ways to many of the serious problems facing this country and the world.” "

Daudo & Sharp (JORS, 1978) argue that OR was and should return to being a technology, drawing on a broad scientific basis; it is not a science in itself. Williams (1986) sees the relationship between OR and economics as being that between engineering and physics. Somewhat more extreme is Eilon (OMEGA, 1984; p. 106; also 1987): “Others will prefer to keep conventional OR as it is and to uphold the claim that it should emulate, as far as possible, the generally accepted norms of behaviour expected from scientists. The argument advanced in this paper is that such a stance is no longer adequate and that we should accept the proposed role of the change-agent, with

8
everything that it entails.

In the early 1980s, the British Operational Research Society established the “Commission on the Future Practice of OR” out of a “widespread apprehension of an impending, or even an actual, crisis confronting operational research” (Report of the Commission, JORS, 1986; p. 831). The entire 58-page report is, as the name already shows, practice-oriented; in fact (p. 842), “The main methodological drive, as inferred by the Commission, is pragmatism.” The contrast with the US “Committee On the Next Decade in Operations Research” (CONDOR, OR, 1988) is striking, as the US Commission does not convey a sense of crisis, and is mainly concerned with the mathematical achievements up to date and promises for the future.

3.2 Customer relations

An issue strongly related to that of dominant orientation, but specifically relevant for applied OR/MS, is that of problems in customer relations. Here we look at three aspects of this issue:

- the frequently recurring theme of communication problems between OR analysts and managers;
- the need for better public relations (PR for OR) and the name of the discipline;
- the need for better understanding of customers’ expectations of OR.

3.2.1 Communication between OR analysts and managers

The problems that OR workers encounter in communicating results of their studies to managers were recognized in the 1950s in the *Harvard Business Review*, but only recently seem to attract much attention in the OR/MS literature. Herrmann & Magee (*HBR*, 1953) already note that communication between OR workers and executives is the most serious problem with applied OR. It is interesting to note the change in opinion in *HBR* as to who is responsible for breaking the communication barrier. Roy (*HBR*, 1958) realises that (p. 122): “There is a vital need for a bridge between the two diverse frames of discourse represented by the prevailing loose terminology of the businessman and the precise language of the scientist”, but states that both
business management and OR consultants should make an effort to overcome this gap. Bennion (*HBR*, 1961) gives reasons why (p. 100) "more businessmen than not are highly skeptical of, if not downright antagonistic toward" OR, but, in contrast to Roy, he believes that (p. 101) "to correct this regrettable state of affairs, I am prone to feel that the econometrician and the programer [sic], rather than the businessman, must accept responsibility for the first step." Jones (*HBR*, 1966) already finds that communication from the OR side is deteriorating; writing about OR articles for businessmen, he states (p. 180): "As a rough rule of thumb, the early articles tend to be better than later ones; the relationship between the business problem and the technique is frequently clearer in the former; and when they were written, there had been less time for a specialized jargon to develop."

That communication problems occur in both directions, is remarked by Boulden & Buffa (*HBR*, 1970; p. 66): "Unfortunately, the OR staff often did not understand the problem, nor could the manager clearly define it". Although the communication issue does not seem to have greatly bothered the OR/MS community until relatively recently, it certainly does now. Smith & Culhan (*INT*, 1986) discuss the priorities indicated by teachers, researchers and practitioners of OR/MS (p. 32): "[...] more than 50% of the 20 priority issues dealt with communications." In Section 2 the problem of communication between different disciplines was mentioned; Blumstein (*OR*, 1987) observes that, here too, things could be better (p. 98): "in order to perform our missionary function well, we need a continually expanding repertoire of tools. And the users of these methods and techniques need to have a greater influence on development efforts."

3.2.2 The image of OR/MS

The image of OR/MS in the outside world is not what it could be. Compare the striking difference in tone between the following two quotes from *HBR* articles, 22 years apart. Baumol & Sevin (*HBR*, 1957) begin their article by writing (p. 52) "It is difficult to exaggerate the opportunities for reduced marketing costs and increased marketing efficiency, and hence greater profits, which are offered to management by the combined techniques of distribution cost analysis and mathematical programing [sic]." Bishop (*HBR*, 1979), on the other hand, is less euphoric (p. 154): "The modus operandi of the operations researcher is to abstract from some real-world problem a mathematical
problem for which he can find an answer. He then touts that answer as a guidepost to the manager." The ongoing debate shows that the OR/MS community is aware of this problem.

One result has been to call the name of the field into question. Recall that Flood (MS, 1955) already used the term "management engineers", at a time when there was no particular reason not to use the term "operations researchers". The very first paragraph of Wagner's (1975) well-known textbook discusses why the name operations research is ambiguous and unfortunate. Lilien's (INT, 1987) "mid-life crisis" paper observes that (p. 36) "the term operations research has developed a somewhat negative connotation in the late '60s and early '70s. According to the panel, the term management science is seen by many managers as a contradiction in terms; managers know that much of what they do is messy, ill-structured, based on poor or biased data, and in need of almost instant resolution." As a possible remedy, he mentions a suggestion by G. Hoffman to use the term "management engineering" for the discipline of MS/OR. The Report of the UK Commission also recognises the problem (p. 854): "An extreme but widely held view—conceivably as many as half OR practitioners hold it—is that the phrase 'operational research' is now understood by clients in so narrow a way, and in a way so unrelated to the actuality of OR in practice, that some new name should be found." The reason for not actually recommending a change of name is that the Commission could not agree upon a suitable replacement. And Weingartner (OR, 1987; p. 259): "The view is growing in acceptance; the name of the field, and the name of the society that champions it, ought to be changed." It is not without reason that, in this paper, we make as much use as possible of the term "management engineering", although it is of course not without drawbacks.

Rinnooy Kan (EJOR, 1989) sees better visibility of the discipline ("PR for OR", p. 283) as the solution to the image problem. A powerful argument in favour of applying OR/MS is the continuous narrowing of profit margins due to fierce global competition. Reducing manufacturing costs by 1%, or increasing delivery reliability by 1%, can make all the difference. One particular strength of OR/MS studies is the ability to expose unnecessary costs and to streamline operations, and even if the change is only marginal percentage-wise, it can prove a highly lucrative or even essential investment. A sense of urgency, such as an attempt to survive, is noted by Telgen (1988) as a necessary condition for OR to be appropriate.
3.2.3 What does the customer really want?

Despite the repeated appeal in the OR/MS literature for more attention to applications, little fundamental knowledge on the process of an OR study is available. Case studies found in literature rarely describe the actual development of the project. A very basic question is how an OR study can be made to meet the customer's wishes. In the next Section we see that OR studies can provide anything between clear answers to specific questions and an increase in the customer's understanding of his/her situation. Naturally, the entire organisation of the project should hinge on whether the customer expects to receive a "black box" computer program with some efficient problem-solving algorithms, or whether he/she expects to gain more insight into his/her operations.

A useful concept, in Fortuin, van Beek & Van Wassenhove (1989), is the "OR cycle", describing the phases a typical OR study would go through: from realisation that there is a problem to problem description, model building and data gathering, selection of a solution method, validation, and, finally, implementation. However, they remark that the OR study may have solved the wrong problem (recall Boulden & Buffa's (HBR, 1970) remarks about OR teams not understanding the problem), and that the problem may have changed during the study, so that the implemented solution must be contrasted with the current problem, and, if necessary, the cycle must be passed through again.

The customer must not only obtain the desired benefits from the OR study, i.e. it must meet his quality requirements; it must also do so within the specified budget and time limit. As time-based competition is becoming increasingly important in business, OR studies should attempt to keep up with this trend and produce the desired results faster. This is obviously incompatible with repeated time-consuming iterations through the OR cycle, so the two types of errors distinguished above must be avoided, by speeding up the OR process and by improving the problem definition stage. Whereas the danger of the problem having changed is reduced by the speeding up, the danger of solving the wrong problem remains. Errors of this sort will normally occur during the steps involving problem description and model building, and can be avoided through more frequent and better communication with the customer; Brown (HBR, 1970) too recognises the danger in the "arms'-length approach" (p. 86) which he considers characteristic of much OR.
Thinking about OR/MS in marketing terms may be helpful. Market segmentation is needed to distinguish between different types of customers (large vs. small firms, private vs. government, strategic vs. operational etc.) in order to optimally cater for their wishes. Jackson & Keys (*JORS*, 1984) discuss how different types of OR are suitable for different types of situations. Key questions are how OR/MS can provide a value-added service to the customer, and how OR/MS should evolve to gain and hold onto competitive advantage over other concepts managers could invest their scarce time and money in.

3.3 Learning from OR

Many *HBR* articles consider the learning effect of an OR study to be more important than the actual results. The Report of the UK Commission contains some highly interesting observations (*JORS*, 1986; p. 841-842):

“34. The Commission found significant amounts of O.R. in practice with one or more of the following aims:

- to help structure ‘messes’ or messy problems;
- to research into the facts of an uncertain topic;
- to help an understanding of a sphere of activity;
- [...]"

35. It is noteworthy that the above list does not include, directly at least, optimizing operations or obtaining cost savings. While improving efficiency in some general sense is no doubt a driving force behind much O.R. in practice, it is achieved indirectly. Almost all practitioners with whom the Commission spoke think that the main benefits of O.R. stem from enhancing the client’s understanding of his own problems. Practitioners commonly see their role as helping their client do his job better, not doing it for him.”

This fact does not seem to have received much attention in the OR/MS literature, and little has been written about how this learning process works. Therefore, we believe that fundamental research is urgently needed into how and what executives can learn from OR studies.
Preparing for future decisions is seen by Salveson (HBR, 1957) as the main use of OR. Baumol & Sevin (HBR, 1957; p. 58): "While a linear program usually will not compute a correct optimum because the changes it suggests will go too far, there is yet a very strong presumption that it will correctly indicate the best directions of change." An article probing deeper into the interaction between OR and management is Roy (HBR, 1958), who writes (p. 120): "In short, and oversimplified, the OR method means getting behind the "art of doing business" and probing into what makes up that important but elusive thing called "business judgment."

More explicit is Bennion (HBR, 1961), who considers the most valuable aspects of models to be (p. 100) "(1) The capacity of the models to improve management's understanding of highly complex problems, which can scarcely fail to enhance the quality of the necessary value judgments management makes. (2) The undeniable fact that the most valuable use of such models usually lies less in turning out the answer in an uncertain world than in shedding light on how much difference an alteration in the assumptions and/or variables used would make in the answer yielded by the models." Hayes (HBR, 1969) elaborates on this, and considers this the advantage of OR over other kinds of tools (p. 108): "I believe that the greatest impact of the quantitative approach will not be in the area of problem solving, although it will have growing usefulness there. Its greatest impact will be on problem formulation: the way managers think about their problems [...] In this sense, the results that "quantitative people" have produced are beginning to contribute in a really significant way to the art of management."

According to Brown (HBR, 1970), the main benefits of decision theory analysis are not the numerical results, but the fact that it clarifies the relevant issues, makes implicit assumptions explicit, and provides a framework for communication. Boulden & Buffa (HBR, 1970) conclude that (p. 83) "Decision making is facilitated because the manager interacts with the model, not because decision-making logic is built into the model itself." In Jones's (HBR, 1970) words (p. 78): "In business decision making, "getting there is more than half the fun." Thus many discussions of attempts to apply new mathematical methods to solving business problems end up with the conclusion that the real benefit was not the specific answer but the increased awareness of organizational problems and opportunities. This was achieved through the discipline of formulating the problem in a new vocabulary and structure." Geoffrion (HBR, 1976) too defends the use of OR by arguing that computer models can deepen managers' insights.
Ackoff (JORS, 1979b; p. 189) recognises this fact: "the principal benefit of planning comes from engaging in it". He suggests using the concept of "idealised design", giving managers a direction to follow, even if the target itself may be unreachable. (Compare this with Baumol & Sevin's (HBR, 1957) views on Linear Programming).

Reading these comments, it is hard to escape the feeling that the OR/MS community has failed to adequately recognise how it could be of greatest value to managers, and it seems high time to develop in detail the implications of these remarks for applied OR. One approach attempting to fill this need is the systems approach, as described by e.g. Checkland (1981). He sees traditional OR/MS, or "hard systems thinking", as a special case of "soft systems thinking"; in the latter, the emphasis is on accepting different existing views of reality (or "Weltanschauung") in order to increase understanding of the behaviour of the system concerned. Clearly, the preciseness or "hardness" of the methodology to be employed in any situation is limited by the preciseness of the problem definition; in many cases, a combination of "soft" and "hard" approaches may be necessary to achieve the best results. Jackson (JORS, 1987) argues that accepting such different approaches, not necessarily "hard", as essential parts of management science, is essential for the discipline to survive in the long run.

3.4 OR/MS at the strategic level

It has been demonstrated beyond question that OR/MS can be highly useful in supporting tactical decisions; whether or not OR/MS can be applied in strategic situations is subject to debate. This issue is obviously strongly related to that of learning from OR: if an OR project is not capable of enabling executives to better understand their situation, it has little chance of having an impact at the strategic level. Furthermore, a field that is not at ease with itself, that has problems communicating with executives, that is reputed to be predominantly mathematical in nature and tool-oriented, will generally not be considered a useful aid in strategic situations. Many well-known examples, dating back to World War II, show the incorrectness of such a view of OR.

Salveson (HBR, 1957) even states that OR is primarily suitable for strategic decisions (p. 93): "Operations research has little, if any, role in making current operating decisions or actions. One
sufficient reason is that, in the event of a current decision, there simply is not time for OR to help.” A similar viewpoint comes from Platt & Maines (HBR, 1959; p. 120). Hayes & Nolan (HBR, 1970), however, take a different view; they believe that, while OR had proved useful in operating situations, trying to extend these smaller models to large corporate models led to “disaster by addition” (p. 105).

Ackoff (JORS, 1979a) claims that, for reasons we discuss in the next Section, OR has been dispersed to lower levels within organisations. Weingartner (OR, 1987) is concerned that to have any impact on the higher levels within organisations, “We must certainly avoid coming across as members of a priesthood, as practitioners of occult arts” (p. 258). Rinnooy Kan (EJOR, 1989) also expresses his worries that OR ought to concentrate on achieving more strategic success (p. 283): “For instance, what will happen if tactical, short term planning procedures have been automated and organizations scrutinize their long term planning problems? Will our profession have anything of substance to offer them beyond what is available today?” Kirkwood (OR, 1990) feels strongly about the importance of performing strategic projects (p. 750): “[...] we should encourage those who are applying OR approaches to strategic problems. If the OR community does not recognize and support this work, then the practitioners doing the work will migrate to other communities. This will mean lost opportunities for OR professionals to work on interesting issues, and less visibility for operations research with corporate and government top management.”

Naturally, the emphasis found in HBR on the learning effect of OR indicates that those authors believed that OR is a valuable support in strategic decision-making; after all, for “simple”, operational decisions, insight and understanding are less relevant. As an aside, one might feel that if the discipline intends to play a larger role in strategic decisions, the name “operational research” is not so fortunate.

3.5 The rule of the tool, or managing messes?

Originally, OR was entirely oriented towards real-world problems, but then at that time there simply were no “OR tools”. In the early days, there was a rush to develop the much-needed tools, and that this development has been extremely successful cannot be disputed, as is demonstrated
by the wealth of techniques OR workers currently have at their disposal. However, many of the contributors to the OR/MS debate seem to think that the focus has shifted too far towards "Analysis in Wonderland", and away from the real world; the discipline would have neglected Drucker's (HBR, 1959) second requirement, that OR/MS take its subject matter seriously.

Wagner (OR, 1971) indeed warns that there may be too much emphasis on techniques in OR, and too little on the problems they are supposed to solve. Ackoff (OR, 1973) emphasizes the distinction between mathematical models and managers' messes, and argues that the tools used in OR/MS are out-of-date, and no longer capable of dealing with the "messes" faced by managers. Note that Ackoff uses the term "problem" to denote a well-defined, abstracted version of a messy real-world situation. In his words (p. 670-671): "[...] accounts are given about how messes were murdered by reducing them to problems, how problems were murdered by reducing them to models, and how models were murdered by excessive exposure to the elements of mathematics." Morse's (OR, 1977) warning against trying to fit reality to the models has been quoted above, as has Bishop's (HBR, 1979) rather cynical view of the "modus operandi of the operations researcher".

A well-known and outspoken article in the OR/MS debate is Ackoff's (JORS, 1979a) "The Future of Operational Research is Past". Ackoff holds academic OR and the relevant professional societies primarily responsible for what he perceives as the decline of the discipline; they brought about that (p. 94) "[...] OR came to be identified with the use of mathematical models and algorithms rather than the ability to formulate management problems, solve them, and implement and maintain their solutions in turbulent environments." In other words (p. 95), "In the first two decades of OR, its nature was dictated by the nature of the problematic situations it faced. Now the nature of the situations it faces is dictated by the techniques it has at its command." He adds (p. 95): "What this dispersion signifies is that OR has been equated by managers to mathematical masturbation and to the absence of any substantive knowledge or understanding of organizations, institutions or their management." Managers have lost interest in OR, because (p. 100) "[T]he unit in OR is a problem, not a mess. Managers do not solve problems; they manage messes." Eilon (OMEGA, 1984) holds a similar viewpoint, and the Report of the UK Commission (JORS, 1986) also points in the same direction. Daniel (EJOR, 1987; p. 271) concludes that "the adaptive OR group itself has proved to be the most enduring and useful 'tool' of all."
In his "OR, a Post Mortem", Ackoff (OR, 1987) pushes his discussion of tool versus problem orientation further. To these two categories, which he calls input and output orientation respectively, he adds the category of market orientation, meaning that a discipline is defined in terms of the class of users addressed, rather than the tools used (inputs) or the problems that can be solved (outputs). He then claims that OR was originally a market-oriented profession, but became output-oriented during the early 1960s, and is nowadays even input-oriented. P. 474: "The field's introversion drove it into a catatonic state in which it died mercifully, but it has yet to be buried." Although Ackoff's views are not uncontroversial, he does seem to describe a natural drift-type phenomenon and the potential fatal outcome.

A much more tool-oriented impression is given by the USA Commission (OR, CONDOR, 1988), whose report focusses on past and future development of tools, and by Hansen (EJOR, 1989), who argues that there is no crisis in OR, pointing to the undisputably successful development of many new techniques as evidence.

Many of the criticisms claim that OR/MS tends to abstract too much from real-world problems, in order to allow more analytical sophistry. The general (though not universal) warning against letting tools become the dominant orientation in OR/MS (the rule of the tool) seems justified, as this requires that potential customers are familiar with the OR/MS toolbox in order to decide whether or not to commission an OR study. This way, OR/MS teams will only receive projects for which they already have the tools, thereby limiting growth opportunities for OR/MS in both theoretical and practical directions.

Of course, the importance of tools should not be underestimated either: the profession would never have got very far without them, nor will it get much further without continuous development of new tools. Weingartner (OR, 1987) signals that researchers will no longer consider individual problems as being independent of each other, but attempt to develop solutions that can be used more than once. This development of general tools is necessary; designers, for example, also use general tools to create a unique design. Theoretically relatively under-researched areas are problem description and model building, as Zimmermann (1985) states: "The contents and scope of operations research has been described and defined in many different ways. Most of the people working in operations research will agree, however, that the modelling of problem situations and
the search for optimal solutions to these models are undoubtedly important parts of it. The latter activity is more algorithmic, mathematical, or formal in character. The former comprises many more disciplines than mathematics, has been more neglected than mathematical research in operations research and, therefore, would probably need more new advances in theory and practice."

An important, but not often recognised, aspect of OR/MS tools, is noted by Blumstein (OR, 1987; p. 98): “We must recognize, however, that our patents on the tools we like to think of as our own have largely expired.” It is true that tools as Linear Programming, PERT charts, simulation, etc., have been developed by the OR/MS community, but, due to their own success, have now become public property. These tools are now used by many people who are not trained as OR/MS workers, and straightforward application of such tools is no longer the exclusive property of OR/MS. Development of fundamentally new tools and new ways of applying existing tools is a necessary condition to prevent OR/MS from eventually being sold out. This coincides with Telgen’s (1988) view of OR; he also notes that OR tools are increasingly being used as black boxes, e.g. while Linear Programming methods are included in spreadsheet packages, most users have no idea of the underlying algorithm.

3.6 The interdisciplinary character of OR/MS

When OR emerged during World War II, there were obviously no specially trained “OR workers”; the field was inherently interdisciplinary, uniting scientists from diverse disciplines. Recalling our earlier definition of “management engineering”, it is clear that very few individuals can hope to meet all those requirements; interdisciplinary teams are therefore a prerequisite. Being at the heart of OR/MS, the question of interdisciplinarity has received much attention in the debate. A mathematical approach, whether this means using mathematical (but not necessarily sophisticated) techniques or simply an analytical style, is an essential characteristic of OR/MS, but it is precisely the dominance of mathematics over other disciplines that has attracted much criticism. It is by no means the case that every single individual in the OR/MS community should be interdisciplinary, only the OR/MS community as a whole. (Note the plural ending in The Institute of Management Sciences.) From the following, it becomes clear that in particular the behavioural
sciences are deemed to have been neglected by the OR/MS community.

Beged-Dov (MS, 1966) expresses his concern (p. B-586): "Perhaps the single greatest obstacle to the establishment of OR as a powerful discipline noted for actual accomplishments is the fact that an ever increasing number of narrow specialists in mathematics and natural sciences impart to our profession undesirable dogmas and outlooks", while Morse (OR, 1977) also observes (p. 187) "narrowing in outlook of many operations research workers". Dando & Sharp (JORS, 1977) are worried about the (p. 943) "present difficulties OR workers have with problems involving major Social or Behavioural features". Van Beek (1978) explicitly calls for more attention for behavioural sciences, as Ackoff (JORS, 1979a) implicitly also does. The importance of interdisciplinarity is underlined by the UK Commission (JORS, 1986; p. 844): "The Commission observed that much successful OR appears to be done in teams drawn from across an organization, seeded with one or more OR practitioners, who will play a key but not necessarily overtly central role in the structuring of the decision-forming process as the work progresses." And Pierskalla (OR, 1987; p. 155): "If OR/MS is to grow, it must deal analytically and realistically with human behavior." It must "reach out to new areas of knowledge and to new approaches, and integrate them into our field." For Telgen (1988), multidisciplinarity is one of the 4 essential characteristics of OR. Thornton (1989) illustrates its interdisciplinary nature in discussing some opportunities for OR in the 1990s: environmental issues, global strategies, human resource management, and, particularly, "improving organizational responsiveness so that short-term opportunities can be capitalized upon quickly in a rapidly-changing world" (p. 2).

Not only should OR/MS learn from and integrate other disciplines; Blumstein (OR, 1987) believes that if OR/MS workers become closely involved in and introduce the OR/MS paradigm to newly developing and not yet fully mathematised fields, such as organisation theory, production, and finance, they may bring about a paradigm shift in those fields. White (OR, 1991), in his "existence theorem" paper, claims that (p. 188) "[...] OR/MS should become a component of any liberal education curriculum", or, "[...] OR/MS must be configured as a service discipline". He sees OR/MS taking the same place as (relatively) mature disciplines as mathematics, economics, etc.
4 Conclusions

This paper was largely motivated by the observation that OR/MS is not attracting managers’ attention the way it used to, as reflected by, among others, the shift away from OR/MS in the Harvard Business Review. Although competition for managers’ attention is fierce, a permanent stronghold there is essential for long-term survival of OR/MS as a practically relevant discipline (who else will pay?). We believe that the discipline can and should fight harder, and hope that this paper has identified some of the main areas towards which our efforts should be directed. Having illustrated the natural drift phenomenon above by systematically discussing various viewpoints on OR/MS, we can draw several conclusions.

First, one could perhaps think of the sense of crisis as if it were caused by OR/MS “reaching the next stage in the product life-cycle”, gradually changing from a highly innovative approach to a more mature management tool. In doing so, its members are finding the boundaries of the field, inevitably leading to some disillusionment. However, this does not constitute failure, but is a consequence of success. Analogously, one might ask whether alchemists, despite having laid part of the basis of chemistry, failed just because they never managed to produce gold?

Second, any individual in the OR/MS world is at liberty to choose where in the six-dimensional space defined by the six main issues distinguished above to position him/herself, but the field as a whole must take care not to stray from an acceptable balance of orientations. The area of “management engineering” seems relatively underpopulated, both in terms of people and in terms of theory. Not all current practical OR work would be considered as “worthy of OR” by the rest of the community. Theoretical work in OR seems to have shifted towards “management science”, leaving the middle ground of “management engineering” underdeveloped. The existence of different paradigms within the OR/MS world should be recognised by the professional societies, and each paradigm should be catered for and its development stimulated. While a separation of paradigms into distinct fields (with their own societies) is potentially harmful, mutual acceptance is a must. The impression imposes itself that, in Great Britain, the Operational Research Society is closer to “management engineering” than the Operations Research Society of America, which lies further towards the basic disciplines. The desirability of a shift towards the British model is currently being debated within the Dutch OR Society.
Third, education. We have not treated this as a separate point here, but much has been written about the role of education in the current “crisis”. Education in OR is in general a largely academic affair, and therefore perhaps not perfectly balanced with respect to the main issues discussed. A key problem is that it is not always clear whether students are being trained to be researchers in “management science” or practitioners in the real world; the type of education needed in both cases is too different to be combined in one curriculum.

Fourth, some areas in need of research can be identified, all typical fundamental aspects of “management engineering”. The need to better understand the process by which managers can learn from an OR study has been mentioned above. It is equally important to know more about customers’ expectations of OR studies and how these can best be met. Empirical research investigating factors influencing success of OR projects, such as Tilanus (EJOR, 1985), can be valuable, but is not very widespread. The importance of research into the art of modelling has been noted by Mitchell (1973) and Zimmermann (1985). In short, the foundations need to be laid to arrive at a “methodology of management engineering”.

Finally, the formulation of the natural drift hypothesis implies that a similar phenomenon can occur in all branches of science. A natural question is then to ask whether they are all undergoing a crisis. It would be interesting to know how they are coping with their “natural drifts”, and who is responsible for their success or failure to do so. In the case of OR/MS, managers have no incentive, time or money to tackle the problem, and experience suggests that the academic community is not ideally placed to do so either. Maybe we should be looking for an “Operational Research Competitiveness Action” (ORCA), in the form of an international cooperation between academia, industry, the professional societies, and governments, who together can provide the people, the problems, the publicity and the funding needed.

To conclude, we repeat that natural forces operate to cause the natural drift described in Section 2. Where these forces have left OR/MS has been outlined in Section 3, from which it is impossible to emerge feeling that all is well. However, nearly all the problems mentioned can be avoided if ways are found to manage the natural drift; by clarifying, accepting, and exploiting the differences in orientation that exist and hopefully always will exist within the OR/MS community. The future of OR/MS is neither bright nor past, it is simply ours to shape.
References

Telgen, J., "Verzin een list!", Inaugural Lecture, University of Twente (NL), 1988

Van Beek, P., “Operationele Research: begin van het einde of . . . einde van het begin?”, Inaugural Lecture, Agricultural University of Wageningen (NL), 1978

Williams, H.P., “Optimization is Best”, Inaugural Lecture, University of Southampton (GB), 1986

Spyros MAKRIDAKIS

"Predicting recessions and other turning points", January 1988.

Spyros MAKRIDAKIS

James TEBOUL

Susan SCHNEIDER

Charles WYPLOSZ

Reinhard ANGELMAR

Ingemar DIERICKX and Karel COOL

Reinhard ANGELMAR and Susan SCHNEIDER

Bernard SINCLAIR-DESGAGNÉ

Bernard SINCLAIR-DESGAGNÉ

"When stationary strategies are equilibrium bidding strategy: The single-crossing property", February 1988.

Bernard SINCLAIR-DESGAGNÉ

"Business firms and managers in the 21st century", February 1988

Manfred KETS DE VRIES

Alain NOEL

Anil DEOLALIKAR and Lars-Hendrik RÖLLER

Gabriel HAWAWINI

Michael BURDA

"Monopolistic competition, costs of adjustment and the behavior of European employment", September 1987.

Michael BURDA

M.J. LAWRENCE and Spyros MAKRIDAKIS

Jean DERMIN, Damien NEVEN and J.F. THISSE

"De-industrialize service for quality", March 1988 (88/03 Revised).

James TEBOUL

"Proper Quadratic Functions with an Application to AT&T", May 1987 (Revised March 1988).

Lars-Hendrik RÖLLER
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
<th>Revised</th>
</tr>
</thead>
</table>
Philippe NAERT and Piet VANDEN ABEELLE

88/48 Michael BURDA

88/49 Nathalie DIERKENS

88/50 Rob WEITZ and Arnoud DE MEYER

88/51 Rob WEITZ

88/52 Susan SCHNEIDER and Reinhard ANGELMAR

88/53 Manfred KETS DE VRIES

88/54 Lars-Hendrik RÖLLER and Mihkel M. TOMBAK

88/55 Peter BOSSAERTS and Pierre HILLION

88/56 Pierre HILLION

88/57 Wilfried VANHONACKER and Lydia PRICE

88/58 B. SINCLAIR-DESGAGNÉ and Mihkel M. TOMBAK

88/59 Martin KILDUFF

88/60 Michael BURDA

88/61 Lars-Hendrik RÖLLER

88/62 Cynthia VAN HULLE, Theo VERMAELEN and Paul DE WOUTERS

88/64 Kasra FERDOWS

88/65 Arnoud DE MEYER and Kasra FERDOWS

88/66 Nathalie DIERKENS
"Quality up, technology down", October 1988.

88/67 Paul S. ADLER and Kasra FERDOWS
"A discussion of exact measures of information asymmetry: the example of Myers and Majluf model or the importance of the asset structure of the firm", December 1988.

89/01 Joyce K. BYRER and Tawfik JELASSI

89/02 Louis A. LE BLANC and Tawfik JELASSI
<table>
<thead>
<tr>
<th>Volume</th>
<th>Authors</th>
<th>Title</th>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/12</td>
<td>Wilfried VANHONACKER</td>
<td>"Estimating dynamic response models when the data are subject to different temporal aggregation", January 1989.</td>
<td></td>
<td>Manfred KETS DE VRIES and Sydney PERZOW</td>
<td>"What is the role of character in psychoanalysis?" April 1989.</td>
<td></td>
</tr>
</tbody>
</table>
Roger BETANCOURT and David GAUTSCHI

"Two essential characteristics of retail markets and their economic consequences"
March 1989.

Charles BEAN, Edmond MALINVAUD, Peter BERNHOLZ, Francesco GIAVAZZI and Charles WYPLOSZ

David KRACKHARDT and Martin KILDUFF

Martin KILDUFF

Robert GOGEL and Jean-Claude LARRECHE

Lars-Hendrik ROLLER and Mihkel M. TOMBAK

Michael C. BURDA and Stefan GERLACH

Peter HAUG and Tawfik JELASSI

Bernard SINCLAIR-DESGAGNÉ

Sumanta GHOSHAL and Nittin NOHRIA

Jean DERMIN and Pierre HILLION

Martin KILDUFF

Manfred KETS DE VRIES

Manfred KETS DE VRIES

Robert KORAJCZYK and Claude VIALLET

"An empirical investigation of international asset pricing", (Revised June 1989).

Balaji CHAKRAVARTHY

"Management systems for innovation and productivity", June 1989.

B. SINCLAIR-DESGAGNE and Nathalie DIERKENS

Robert ANSON and Tawfik JELASSI

Michael BURDA

Balaji CHAKRAVARTHY and Peter LORANGE

Rob WEITZ and Arnoud DE MEYER

Marcel CORSTJENS, Carmen MATUTES and Damien NEVEN

Manfred KETS DE VRIES and Christine MEAD

Damien NEVEN and Lars-Hendrik RÖLLER

89/49 Jean DERMINE

89/50 Jean DERMINE

89/51 Spyros MAKRIDAKIS

89/52 Arnoud DE MEYER

89/53 Spyros MAKRIDAKIS

89/54 S. BALAKRISHNAN and Mitchell KOZA

89/55 H. SCHUTTE

89/56 Wilfried VANHONACKER and Lydia PRICE

89/57 Taekwon KIM, Lars-Hendrik RÖLLER and Mihkel TOMBAK

89/58 Lars-Hendrik RÖLLER and Mihkel TOMBAK

89/59 Manfred KETS DE VRIES, Daphne ZEVA DI, Alain NOEL and Mihkel TOMBAK

89/60 Enver YUCESAN and Lee SCHRUBEN
"Simulation graphs for design and analysis of discrete event simulation models", October 1989.

89/61 Susan SCHNEIDER and Arnoud DE MEYER

89/62 Arnoud DE MEYER

89/63 Enver YUCESAN and Lee SCHRUBEN

89/64 Enver YUCESAN and Lee SCHRUBEN

89/65 Soumitra DUTTA and Lee SCHRUBEN (AC, FIN)
Piero BONISSONE

1990

90/01 B. SINCLAIR-DESGAGÉ

90/02 Michael BURDA

90/03 Arnoud DE MEYER

90/04 Gabriel HAWAWINI and Eric RAJENDRA

90/05 Gabriel HAWAWINI and Bertrand JACQUILLAT
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Conference</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>90/06</td>
<td>Gabriel HAWAWINI and Eric RAJENDRA</td>
<td>"Integration of European Equity Markets: Implications of Structural Change for Key Market Participants to and Beyond 1992", January 1990.</td>
<td>FIN/EP</td>
<td>90/06</td>
</tr>
<tr>
<td>90/10</td>
<td>Joyce BRYER and Tawfik JELASSI</td>
<td>"The Impact of Language Theories on DSS Dialog", January 1990.</td>
<td>TM</td>
<td>90/10</td>
</tr>
<tr>
<td>90/13</td>
<td>Soumitra DUTTA and Shashi SHEKHAR</td>
<td>"Approximate Reasoning about Temporal Constraints in Real Time Planning and Search", January 1990.</td>
<td>TM/EP</td>
<td>90/13</td>
</tr>
<tr>
<td>90/14</td>
<td>Albert ANGEHRN and Hans-Jakob LÜTHI</td>
<td>"Visual Interactive Modelling and Intelligent DSS: Putting Theory Into Practice", January 1990.</td>
<td>TM</td>
<td>90/14</td>
</tr>
<tr>
<td>90/15</td>
<td>Arnoud DE MEYER, Dirk DESCHOLLEMEESTER, Rudy MOENAERT and Jan BARBE</td>
<td>"The Internal Technological Renewal of a Business Unit with a Mature Technology", January 1990.</td>
<td>TM</td>
<td>90/15</td>
</tr>
<tr>
<td>90/16</td>
<td>Richard LEVICH and Ingo WALTER</td>
<td>"Tax-Driven Regulatory Drag: European Financial Centers in the 1990's", January 1990.</td>
<td>FIN</td>
<td>90/16</td>
</tr>
<tr>
<td>90/17</td>
<td>Nathalie DIERKENS</td>
<td>"Information Asymmetry and Equity Issues", Revised January 1990.</td>
<td>FIN</td>
<td>90/17</td>
</tr>
<tr>
<td>90/19</td>
<td>Beth JONES and Tawfik JELASSI</td>
<td>"The Effect of Computer Intervention and Task Structure on Bargaining Outcome", February 1990.</td>
<td>TM</td>
<td>90/19</td>
</tr>
<tr>
<td>90/20</td>
<td>Tawfik JELASSI, Gregory KERSTEN and Stanley ZIONTS</td>
<td>"An Introduction to Group Decision and Negotiation Support", February 1990.</td>
<td>TM</td>
<td>90/20</td>
</tr>
<tr>
<td>90/21</td>
<td>Roy SMITH and Ingo WALTER</td>
<td>"Reconfiguration of the Global Securities Industry in the 1990's", February 1990.</td>
<td>FIN</td>
<td>90/21</td>
</tr>
<tr>
<td>90/22</td>
<td>Ingo WALTER</td>
<td>"European Financial Integration and its Implications for the United States", February 1990.</td>
<td>FIN</td>
<td>90/22</td>
</tr>
<tr>
<td>90/26</td>
<td>Charles KADUSHIN and Michael BRIMM</td>
<td>"Why networking Fails: Double Binds and the Limitations of Shadow Networks", February 1990.</td>
<td>OB/BP</td>
<td>90/26</td>
</tr>
<tr>
<td>90/27</td>
<td>Abbas FOROUGHI and Tawfik JELASSI</td>
<td>"NSS Solutions to Major Negotiation Stumbling Blocks", February 1990.</td>
<td>TM</td>
<td>90/27</td>
</tr>
<tr>
<td>Number</td>
<td>Author(s)</td>
<td>Title</td>
<td>Journal/Conference</td>
<td>Year</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>90/29</td>
<td>Nathalie DIERKENS</td>
<td>"A Discussion of Correct Measures of Information Asymmetry"</td>
<td>FIN/AC</td>
<td>January 1990</td>
</tr>
<tr>
<td>90/31</td>
<td>David GAUTSCHI and Roger BETANCOURT</td>
<td>"What Determines U.S. Retail Margins?"</td>
<td>MKT/EP</td>
<td>February 1990</td>
</tr>
<tr>
<td>90/33</td>
<td>Caren SIEHL, David BOWEN and Christine PEARSON</td>
<td>"The Role of Rites of Integration in Service Delivery"</td>
<td>OB</td>
<td>March 1990</td>
</tr>
<tr>
<td>90/34</td>
<td>Jean DERME</td>
<td>"The Gains from European Banking Integration, a Call for a Pro-Active Competition Policy"</td>
<td>FIN/EP</td>
<td>April 1990</td>
</tr>
<tr>
<td>90/36</td>
<td>Arnoud DE MEYER</td>
<td>"An Empirical Investigation of Manufacturing Strategies in European Industry"</td>
<td>TM</td>
<td>April 1990</td>
</tr>
<tr>
<td>90/37</td>
<td>William CATS-BARIL</td>
<td>"Executive Information Systems: Developing an Approach to Open the Possibles"</td>
<td>TM/OB/SM</td>
<td>April 1990</td>
</tr>
<tr>
<td>90/38</td>
<td>Wilfried VANHONACKER</td>
<td>"Managerial Decision Behaviour and the Estimation of Dynamic Sales Response Models"</td>
<td>MKT</td>
<td>(Revised February 1990)</td>
</tr>
<tr>
<td>90/40</td>
<td>Manfred KETS DE VRIES</td>
<td>"Leaders on the Couch: The case of Roberto Calvi", April 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/41</td>
<td>Gabriel HAWAWINI, Izhak SWARY and Ik HWAN JANG</td>
<td>"Capital Market Reaction to the Announcement of Interstate Banking Legislation", March 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/42</td>
<td>Joel STECKEL and Wilfried VANHONACKER</td>
<td>"Cross-Validating Regression Models in Marketing Research", (Revised April 1990)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/44</td>
<td>Gilles AMADO, Claude FAUCHEUX and André LAURENT</td>
<td>"Organisational Change and Cultural Realities: Franco-American Contrasts", April 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/45</td>
<td>Soumitra DUTTA and Piero BONISSONE</td>
<td>"Integrating Case Based and Rule Based Reasoning: The Possibilistic Connection", May 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/46</td>
<td>Spyros MAKRIDAKIS and Michèle HIBON</td>
<td>"Exponential Smoothing: The Effect of Initial Values and Loss Functions on Post-Sample Forecasting Accuracy"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/47</td>
<td>Lydia PRICE and Wilfried VANHONACKER</td>
<td>"Improper Sampling in Natural Experiments: Limitations on the Use of Meta-Analysis Results in Bayesian Updating", Revised May 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/48</td>
<td>Jae WON PARK</td>
<td>"The Information in the Term Structure of Interest Rates: Out-of-Sample Forecasting Performance", June 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/49</td>
<td>Soumitra DUTTA</td>
<td>"Approximate Reasoning by Analogy to Answer Null Queries", June 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90/50</td>
<td>Daniel COHEN and Charles WYPLOSZ</td>
<td>"Price and Trade Effects of Exchange Rate Fluctuations and the Design of Policy Coordination", April 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Publication Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Outputs of Retail Activities: Concepts, Measurement and Evidence</td>
<td>Roger BETANCOURT and David GAUTSCHI</td>
<td>October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managerial Decision Behaviour and the Estimation of Dynamic Sales Response Models</td>
<td>Wilfried VANHONACKER</td>
<td>Revised October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing the Keych Scheme of Sales Response to Advertising: An Aggregation-Independent Autocorrelation Test</td>
<td>Wilfried VANHONACKER</td>
<td>October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchange Rate Dynamics and Currency Unification: The Ostmark - DM Rate</td>
<td>Michael BURDA and Stefan GERLACH</td>
<td>October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferences with an Unknown Noise Level in a Bernoulli Process</td>
<td>Anil GABA</td>
<td>October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Survey Data in Inferences about Purchase Behaviour</td>
<td>Anil GABA and Robert WINKLER</td>
<td>October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Du Présent au Futur: Bilan et Orientations des Systèmes Interactifs d'Aide à la Décision</td>
<td>Tewfik JELASSI</td>
<td>October 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary Union and Fiscal Policy Discipline</td>
<td>Charles WYPLOSZ</td>
<td>November 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Asymmetry and Corporate Communication: Results of a Pilot Study</td>
<td>Nathalie DIERKENS and Bernard SINCLAIR-DESGAGNE</td>
<td>November 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Effect of Advertising on Price and Quality: The Optometric Industry Revisited</td>
<td>Philip M. PARKER</td>
<td>December 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal Timing and Location in Competitive Markets</td>
<td>Avijit GHOSH and Vitak TIBREWALA</td>
<td>November 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prudence and Success in Politics</td>
<td>Olivier CADOT and Bernard SINCLAIR-DESGAGNE</td>
<td>November 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existence of Equilibrium in CAPM: Further Results</td>
<td>Lars Tyge NIELSEN</td>
<td>December 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The CEO Who Couldn't Talk Straight and Other Tales from the Board Room</td>
<td>Manfred F.R. KETS DE VRIES</td>
<td>December 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price Elasticity Dynamics over the Adoption Lifecycle: An Empirical Study</td>
<td>Philip PARKER</td>
<td>December 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Research Can Do More for Managers Than They Think</td>
<td>Luk VAN WASSENHOVE, Leonard FORTUIN and Paul VAN BEEK</td>
<td>January 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Research and Environment</td>
<td>Luk VAN WASSENHOVE, Leonard FORTUIN and Paul VAN BEEK</td>
<td>January 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Implicit Dividend Increase in Rights Issues: Theory and Evidence</td>
<td>Pekka HITALA and Timo LÖYTTYNIEMI</td>
<td>January 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Fund Separation, Factor Structure and Robustness</td>
<td>Lars Tyge NIELSEN</td>
<td>January 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Boundaries in Organisations</td>
<td>Susan SCHNEIDER</td>
<td>January 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding the Leader-Strategy Interface: Application of the Strategic Relationship Interview Method</td>
<td>Manfred KETS DE VRIES, Danny MILLER and Alain NOEL</td>
<td>January 1990 (SW11, revised April 1990)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
91/07 Olivier CADOT
EP
"Leading to Involvent Countries: A Paradoxical
Story," January 1991
91/19 Vikas TIBREWALA and
MKT
Bruce BUCHANAN
"An Aggregate Test of Purchase Regularity",
March 1991

91/08 Charles WYPLOSZ
EP
"Post-Reform East and West: Capital
Accumulation and the Labour Mobility
Constraint," January 1991
91/20 Darius SABAVALA and
MKT
Vikas TIBREWALA
"Monitoring Short-Ru Changes in Purchasing
Behaviour", March 1991

91/09 Spyros MAKRIDAKIS
TM
"What can we Learn from Failure?", February 1991
91/21 Sunamtra GHOSHAL,
SM
Harry KORINE and
Gabriel SZULANSKI
"Intensiv Communication within MNCs: The
Influence of Formal Structure Versus Integrative
Processes", April 1991

91/10 Luc Van WASSENHOVE and
TM
C. N. POTTS
"Integrating Scheduling with Batchign and
Lot-Sizing: A Review of Algorithms and
Complexity", February 1991
91/22 David GOOD,
EP
Lara-Hendrik RÖLLER and
Robin SICKLES
"EC Integration and the Structure of the Franco-
American Airline Industries: Implications for
Efficiency and Welfare", April 1991

91/11 Luc VAN WASSENHOVE et al.
TM
"Multi-Item Lotsizing in Capacitated Multi-Stage
Serial Systems", February 1991
91/23 Spyros MAKRIDAKIS and
TM
Michèle HIBON
"Exponential Smoothing: The Effect of Initial
Values and Loss Functions on Post-Sample
Forecasting Accuracy", April 1991 (Revision of
90/46)

91/12 Albert ANGEHRN
TM
"Interpretative Computer Intelligence: A Link
between Users, Models and Methods in DSS",
February 1991
91/24 Louis LE BLANC and
TM
Tawfik JELASSI
"An Empirical Assessment of Choice Models for
Software Evaluation and Selection", May 1991

91/13 Michael BURDA
EP
"Labor and Product Markets in Czechoslovakia and
the Ex-GDR: A Twin Study", February 1991
91/25 Luk N. VAN WASSENHOVE and
TM
Charles J. CORBETT

91/14 Roger BETANCOURT and
MKT
David GAUTSCHI
"The Output of Retail Activities: French
Evidence", February 1991
91/26 Luk N. VAN WASSENHOVE and
TM
C.N. POTTS
"Single Machine Scheduling to Minimize Total Late
Work", April 1991

91/15 Manfred F.R. KETS DE VRIES
OB
"Exploding the Myth about Rational Organisations
and Executives", March 1991
91/27 Nathalie DIERKENS
FIN
"A Discussion of Correct Measures of Information
Asymmetry: The Example of Myers and Majul's
Model or the Importance of the Asset Structure of
the Firm", May 1991

91/16 Arnoud DE MEYER and
TM
Kasa FERDOWS et.al.
"Factories of the Future: Executive Summary of
the 1990 International Manufacturing Futures
Survey", March 1991
91/28 Philip M. PARKER
MKT
"A Note on: Advertising and the Price and Quality
of Optometric Services", June 1991

91/17 Dirk CATTRYSSE,
TM
Rockof KUIK,
MKT
Marc SALOMON and
Luk VAN WASSENHOVE
"Heuristics for the Discrete Lotsizing and
Scheduling Problem with Setup Times", March 1991
91/29 Tawfik JELASSI and
TM
Abbas FOROUGHI
"An Empirical Study of an Interactive, Session-
Oriented Computerised Negotiation Support System
(NSS)", June 1991

91/18 C.N. POTTS and
TM
Luk VAN WASSENHOVE
"Approximation Algorithms for Scheduling a Single
Machine to Minimize Total Late Work",
March 1991
91/30 Wilfried R. VANHONACKER and Lydia J. PRICE
MKT "Using Meta-Analysis Results in Bayesian Updating: The Empty Cell Problem", June 1991

91/31 Rezaul KABIR and Theo VERMAELEN
FIN " Insider Trading Restrictions and the Stock Market", June 1991

91/32 Susan C. SCHNEIDER

91/33 Michael C. BURDA and Michael FUNKE
EP "German Trade Unions after Unification - Third Degree Wage Discriminating Monopolists?", June 1991

91/34 Jean DEREMINE
FIN "The BIS Proposal for the Measurement of Interest Rate Risk, Some Pitfalls", June 1991

91/35 Jean DEREMINE
FIN "The Regulation of Financial Services in the EC, Centralization or National Autonomy?", June 1991

91/36 Albert ANGEHRN

91/37 Ingo WALTER and Hugh THOMAS

91/38 Ingo WALTER and Anthony SAUNDERS
EP "National and Global Competitiveness of New York City as a Financial Center", August 1991

91/39 Ingo WALTER and Anthony SAUNDERS

91/40 Luk VAN WASSENBROEKE, Dirk CATTEYSSE and Marc SALOMON

91/41 Luk VAN WASSENBROEKE, M.Y. KOVALYOU and C.N. POTTIS
TM "A Fully Polynomial Approximation Scheme for Scheduling a Single Machine to Minimize Total Weighted Late Work", August 1991

91/42 Rob R. WEITZ and Tawfik JELASSI

91/43 Sumanta GHOSHAL and Christopher BARTLETT
SM "Building Transnational Capabilities: The Management Challenge", September 1991

91/44 Sumanta GHOSHAL and Nitin NOHRIA
SM "Distributed Innovation in the 'Differentiated Network' Multinational", September 1991

91/45 Philip M. PARKER

91/46 Philip M. PARKER
MKT "Pricing Strategies in Markets with Dynamic Elasticities", October 1991

91/47 Philip M. PARKER

91/48 H. Landis GABEL and Bernard SINCLAIR-DESAGNE

91/49 Bernard SINCLAIR-DESAGNE

91/50 Luk VAN WASSENHOEVE and Charles CORBETT
SM/TM "How Green is Your Manufacturing Strategy?", October 1991

91/51 Philip M. PARKER

91/52 Michael BURDA and Charles WYPLOSZ

91/53 Michael BURDA and Charles WYPLOSZ
EP "Labour Mobility and German Integration: Some Vignettes", October 1991

91/54 Albert ANGEHRN
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991/57</td>
<td>Lydia J. PRICE, MKT</td>
<td>"The Indirect Effects of Negative Information on Attitude Change", November 1991</td>
</tr>
<tr>
<td>1992/08</td>
<td>Luk VAN WASSENHOVE, Leo KROON and Marc SALOMON</td>
<td>TM "Exact and Approximation Algorithms for the Operational Fixed Interval Scheduling Problem", January 1992</td>
</tr>
<tr>
<td>1991/60</td>
<td>Xavier DE GROOTE, TM</td>
<td>"Flexibility and Marketing/Manufacturing Coordination", November 1991 (revised)</td>
</tr>
<tr>
<td>1992/12</td>
<td>Gabriel HAWAWINI</td>
<td>FIN "Valuation of Cross-Border Mergers and Acquisitions", February 1992</td>
</tr>
</tbody>
</table>
92/15 Vikas TIBREWALA, Peter LENK and Ambar RAO

"Nonstationary Conditional Trend Analysis: An Application to Scanner Panel Data", February 1992

92/16 Xavier DE GROOTE and Yu-Sheng ZHENG

"A Sensitivity Analysis of Stochastic Inventory Systems", March 1992

92/17 Xavier DE GROOTE and Evan L. PORTEUS

92/18 Xavier DE GROOTE

"Information Disclosure and Technology Choice", March 1992

92/19 Jean DERMINÉ

"Deposit Insurance, Credit Risk and Capital Adequacy: A Note", March 1992

92/20 Tawfik JELASSI and Michèle SANGLIER

"Information, Systèmes Complexes et Technologies de l'Information", March 1992

92/21 Paul J. VERDIN and Peter J. WILLIAMSON

"From Barriers to Entry to Barriers to Survival", March 1992

92/22 Christian PINSON

"Semiotics of Marketing", April 1992

92/23 Luk VAN WASSENHOVE, Jacqueline RUWAARD and Marc SALOMON

"On Coordination of Product and Waste Flows in Distribution Networks: Model Formulations and Solution Procedures", April 1992

92/24 Luk VAN WASSENHOVE and F. J. C. DEBETS

"A Guided Tour through Applications of OR-Techniques to Environmental Problems", April 1992