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An empirical comparison of the efficacy of covariance-based and variance-based SEM

Abstract

Variance-based SEM, also known under the termaddetast squares (PLS) analysis,
is an approach that has gained increasing intem@sing marketing researchers in recent
years. During the last 25 years, more than 30 lestibave been published in leading
marketing journals that have applied this appraastead of the more traditional alternative
of covariance-based SEM (CBSEM). However, althoagh analysis of these previous
publications shows that there seems to be at &sashplicit agreement about the factors that
should drive the choice between PLS analysis an&ENB no research has until now
empirically compared the performance of these aggres given a set of different
conditions. Our study addresses this open quebfforonducting a large-scale Monte-Carlo
simulation. We show that justifying the choice &fSPdue to a lack of assumptions regarding
indicator distribution and measurement scale i®roftnappropriate, as CBSEM proves
extremely robust with respect to violations of usderlying distributional assumptions.
Additionally, CBSEM clearly outperforms PLS in tesnof parameter consistency and is
preferable in terms of parameter accuracy as l@dha sample size exceeds a certain
threshold (250 observations). Nevertheless, PL3ysisashould be preferred when the
emphasis is on prediction and theory developmenthea statistical power of PLS is always
larger than or equal to that of CBSEM; already, &B8ervations can be sufficient to achieve

acceptable levels of statistical power given aagerquality of the measurement model.



An empirical comparison of the efficacy of covariance-based and variance-based SEM

Introduction

Since Joreskog's (1967) seminal work on maximureliltood factor analysis and its
later extensions to the estimation of structuralagign systems (Joreskog 1973), structural
equation modeling (SEM) has become one of the nmpbrtant methods of empirical
research, which has been applied in a multitudarefs including psychology (MacCallum
and Austin 2000), management research (Williane.2003), and marketing (Baumgartner
and Homburg 1996). For many researchers, applylgl $ equivalent to carrying out a
maximume-likelihood, covariance-based analysis usfng example, the LISREL software
(Joreskog and Sorbom 1982). Such covariance-bdskd(SBSEM) focuses on estimating a
set of model parameters so that the theoreticahrcvce matrix implied by the system of
structural equations is as close as possible terip@rical covariance matrix observed within
the estimation sample. When carried out using masintikelihood (ML) or generalized
least squares (GLS), this estimation requires afsassumptions to be fulfilled, such as the
normal distribution of observed indicators and istght sample size. If these assumptions are
violated, nontraditional alternatives to SEM, swh partial least squares (PLS, see, e.g.,
Rigdon 2005; Wold 1975), appear to be preferabteng for researchers. Unlike CBSEM, a
PLS analysis does not work with latent variables tather with block variables, and
estimates model parameters to maximize the variexpkained for all endogenous constructs
in the model through a series of ordinary leastisem (OLS) regressions. It does not require
any distributional assumptions to be fulfilled lbesults in inconsistent parameter estimates if
the number of indicators per construct and the $arspze are not infinitely large (Wold

1975).



According to Fornell and Bookstein (1982), the @léint objectives of CBSEM and
PLS may result in different parameter estimatestiiersame structural model in any given
situation, which makes the choice between these aporoaches “neither arbitrary nor
straightforward.” Previous research highlights éhdifferences between CBSEM and PLS
that can be used to guide this choice. First, patanmestimation in PLS is essentially carried
out by a sequence of OLS regressions, which imghas no assumptions regarding the
distribution or measurement scale of observed atdis are required. In contrast, ML- or
GLS-based CBSEM require normally distributed artérival-scaled variables (e.g., Dijkstra
1983; Fornell and Bookstein 1982). In addition, tise of OLS estimation also implies that
PLS even works with small sample sizes, whereas BIL-GLS-based CBSEM usually
require at least 200 observations to avoid non-eqgence and improper solutions
(Boomsma and Hoogland 2001). Second, PLS focusesaxmizing the variance explained
for all endogenous constructs in the model, wher€&SEM determines the model
parameters to reproduce an empirically observeargavce matrix. PLS is therefore better
suited for situations in which the researcher wamtsredict the latent variables in the model
or identify relationships between them (e.g., ia garly stages of theory development), while
CBSEM should be the method of choice when the fd@sson confirming theoretically
assumed relationships. Third, the PLS parameténasbn process continuously oscillates
between estimating case values for the block viasadnd model parameters that depend on
these case values. Block variables are hereby assum be a weighted average of all
indicators that belong to the same construct. Beeathis basic approach is identical
regardless of the type of operationalization useflective vs. formative), PLS can deal with
an almost unlimited number of formative indicatohs. contrast, CBSEM may result in
implied covariances of zero among some indicatodéa equivalent models when formative

measurements predominate (MacCallum and Browne)l®28thermore, because all block



variables are assumed to be linear combinationisenf indicators, PLS does not suffer from
improper solutions and factor indeterminacy, asetonmes occurs in the context of CBSEM

(e.g., Bollen 1987; Chen et al. 2001; Krijnen etl&198).



Table 1: Articles published in the past 25 yearsusing PL S and reasons provided for methodological choice

No assumptions Focuson Suitability for L ack of improper
: about indicator Suitability for prediction and unlimited number . prop
Article S : . solutions/factor
distribution/ small samplesize theory of formative indeter mina
measur ement scale development indicators cy
Fornell and Robinson (1983) Yes Yes
Fornell, Robinson, and Wernerfelt (1985) Yes
Mayo and Qualls (1987) Yes Yes
Qualls (1988) Yes Yes Yes
Zinkhan and Fornell (1989) Yes Yes Yes
Fornell, Lorange, and Roos (1990) Yes Yes
Barclay (1991) Yes
Alpert, Kamins, and Graham (1992) Yes
Fornell (1992) Yes Yes
Graham, Mintu, and Rodgers (1994) Yes Yes Yes
Green, Barclay, and Ryans (1995) Yes Yes Yes
Fornell et al. (1996) Yes Yes
Smith and Barclay (1997) Yes Yes
Dawes, Lee, and Dowling (1998) Yes Yes
Sirohi, McLaughlin, and Wittink (1998) Yes Yes ¥e
Ahuja, Galletta, and Carley (2003) Yes Yes Yes
Arnett, Leverie, and Meiers (2003) Yes Yes Yes Yes
Vanhamme and Snelders (2003) Yes Yes
White, Varadarajan, and Dacin (2003) Yes Yes Yes
Anderson, Fornell, and Mazvancheryl (2004) Yes Yes
Cotte and Wood (2004) Yes
Dellande, Gilly, and Graham (2004) Yes
Gray and Meister (2004) Yes
Reinartz, Krafft, and Hoyer (2004) Yes Yes
Grégoire and Fisher (2005) Yes
Hennig-Thurau et al. (2006) Yes
Ulaga and Eggert (2006) Yes Yes
Venkatesh and Agarwal (2006) Yes Yes
Hennig-Thurau et al. (2007) Yes
Mitchell and Nault (2007) Yes
McFarland et al. (2008) Yes




With respect to the use of CBSEM and PLS analysismanagement research, the
former approach easily dominates the latter. Yetracent years, interest in PLS has
increased considerably, a phenomenon that we dadumeTable 1, in which we list all
articles in eight leading marketing journakdyances in Consumer Research, International
Journal of Research in Marketing, Journal of Consumer Research, Journal of Marketing,
Journal of Marketing Research, Journal of Retailing, Management Science, and Marketing
Science) that have used PLS and been published in theafagears. Two points emerge.
First, it seems that PLS has prompted increasitegaat among researchers in recent years.
Of the 31 articles in Table 1, more than 50% (1®)ehappeared since 2003. Second, in each
of these articles, one or several of the aforeroaptl differences between PLS and CBSEM
are listed as reason(s) for the authors’ methodcdbghoices. Specifically, most articles
mention the lack of assumptions regarding indicdisiribution and measurement scales (19)
for choosing PLS, followed by a focus on predictenmd theory development (15) and the
appropriateness of models with many formative iattics (12). The suitability of small
sample sizes (11) and the nonexistence of imprepkitions and factor indeterminacy (3)
rank fourth and fifth, respectively. Thus, thererss to be at least an implicit agreement
about the factors that should drive the choice betwCBSEM and PLS. Yet, despite this
agreement, there are to our knowledge quantitative guidelines that help marketing

researchers to make an unambiguous choice betivesa two approaches.

! No articles using PLS appeared in Marketing Seeaad only one appeared in the International o
Research in Marketing (Bagozzi et al. 1991), tht=itdeing methodological in nature. Table 1 inelsidnly
articles where a justification for the choice of3?aver CBSEM has been given; it excludes all asithat are
purely methodological.



Table 2: Overview of Monte Carlo simulation studiesfocusingon CBSEM and/ or PLS

Estimation technique Design factor Analysisfocus
Article Sample Number of Indicator Indicator | Parameter Proper Statistical
CBSEM PLS . A P ; ) )
size indicators  distribution  loadings bias solutions Power

Areskoug (1982) Yes Yes Yes Yes No No Yes No No
Hui and Wold (1982) No Yes Yes Yes No No Yes NA No
Gerbing and Anderson (1985) Yes No Yes Yes No Yeg esyY No No
Balderjahn (1986) Yes No Yes No No Yes Yes Yes No
Babakus et al. (1987) Yes No Yes No Yes Yes Yes Yes No
Sharma et al. (1989) Yes No Yes No Yes No Yes Yes o N
Marsh et al. (1998) Yes No Yes Yes No No Yes Yes No
Cassel et al. (1999) No Yes Yes No Yes No Yes NA No
Chin and Newsted (1999) No Yes Yes Yes No No Yes NA No
Chen et al. (2001) Yes No Yes No No No No Yes No
Goodhue et al. (2006) Yes Yes Yes No No No Yes No esY
Current study Yes Yes Yes Yes Yes Yes Yes Yes Yeq

Note: Does not include simulation studies thatfaceised on the relative performance of differeninfilices (e.g., Bearden et al. 1982; Curran €1%96; Hu and Bentler
1998) or on the analysis of specific issues, sucha estimation of interaction effects (e.g., Gtial. 2003), between-group differences (e.g.e&hirand Compeau 2009),

measurement model misspecification (e.g., Jands. &003) and item parceling (e.g., Bandalos 2602y and Hagtvet 2003; Nasser and Wisenbaker 2003).



This lack of unambiguous quantitative guidelineatiseast partly caused by the fact
that previous simulation studies focusing on CBS&hd/or PLS frequently either include
only one of these two approaches or only considea bmited set of design factors. This can
be seen in Table 2, where we provide an overvieth@fmajor simulation studies that have
investigated the performance of CBSEM and/ or PI8ree results are particularly
interesting. First, most studies, and especiakydhes published by marketing scholars (e.g.,
Babakus et al. 1987; Gerbing and Anderson 1985rnsh&t al. 1989), focus exclusively on
the behavior of CBSEM estimates under various d¢amd. This is consistent with our
previous observation that within the marketingrétere, the use of CBSEM is far more
frequent than the use of PLS, making a focus on ENBSmore appropriate, at least
historically. Yet, while such studies provide imsting and relevant guidelines, they are only
of limited usefulness when researchers want to esenthe performance of CBSEM and PLS
in different situations in order to choose the magpropriate approach for their research
setting. Second, three studies investigate theopradnce of PLS (Cassel et al. 1999; Chin
and Newsted 1999; Hui and Wold 1982), but theiufors limited to a subset of two relevant
design factors (sample size plus either numberndicators per construct or indicator
distribution) and therefore does not allow one talabce competing objectives and
requirements with regard to the choice between QBS3IEd PLS. Third, only two studies
(Areskoug 1982; Goodhue et al. 2006) include a Banaous investigation of CBSEM and
PLS. Yet, they equally only focus on a small sulisedesign factors and rely on relatively
simple model structures that are not representédivthe type of structural equation systems
usually analyzed within the marketing discipline.

In summary, no previous research has empiricalihpared the performance of
CBSEM and PLS along a large set of relevant detagtors, which makes the relative

performance of both approaches in many cases undles lack of clear evidence makes it



difficult for researchers to choose between CBSH#I RLS when some arguments favor one
method whereas others suggest the other. Our sttelyds to provide a contribution in this
area. Specifically, our objectives are twofold sgiwe investigate the relative performance of
ML-based CBSEM and PLS given a set of conditiohsyacterized by a full-factorial design
of four factors that have previously been showrhawe an impact on the performance of
structural modefs number of indicators per construct, sample siistribution, and indicator
loadings. Second, we identify a set of rules tlestearchers can follow when choosing
between ML-based CBSEM and PLS analysis. For ttterlguestion, we focus on three
different questions: First, does the approach cayevéo a proper solution? Second, what is
the degree of parameter accuracy between the ag@@®and the relative importance of the
different design factors in driving parameter aecyf And finally, is the approach able to
identify true relationships among the variableshi@ structural equation model—or, to put it
differently, does it have low Type Il error/highasstical power? We analyze these questions
using a Monte Carlo simulation with 48,000 runsQ24¢enarios with 200 replications each).
For data generation, we use Mattson’s method (Mati997; Reinartz et al. 2002), which
accounts substantially better for the non-normatriiutions of latent variables than do
traditional approaches recommended by, for exampleishman (1978) and Vale and
Maurelli (1983).

Our results provide evidence that justifying theoice of PLS over ML-based
CBSEM due to a lack of assumptions regarding iridrcdistribution is often inappropriate.
Although PLS does not build on any distributionss@mptions, ML-based CBSEM behaves
robustly if those assumptions are violated, suel this difference seems to be irrelevant in
many applications. Nevertheless, PLS is the prbferapproach when researchers focus on

prediction and theory development, as our simutagtghow that PLS requires only about half

2 Since our theoretical model includes only refleiindicators, our PLS analysis relies on the Made-
estimation mode.
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as many observations to reach a given level oisitatl power as does ML-based CBSEM.
Furthermore, choosing PLS over ML-based CBSEM wthensample size is limited appears
sensible. The absolute relative error of parameten®ases less quickly with a decrease in
sample size for PLS than it does for ML-based CB$SENRO the negative effects of low
sample sizes can easily be compensated for byasiog the number of indicators per
construct or by using indicators with better psyaetric properties (i.e., higher loadings).
Finally, PLS should be the preferred approach wherresearcher wants to avoid improper
solutions, though we recognize that improper sohgiare a relatively rare phenomenon in
structural equation models with average complexffecting only a bit more than 1% of all

our simulations.

Theoretical background
As stated in the previous section, the objectiveowf analysis is to compare the
performance of ML-based CBSEM and PLS in a setooiddions, characterized by a full-
factorial design of four factors (i.e., number ofdicators per construct, sample size,
distribution, and indicator loadings). Therefores first need to review prior studies that have

investigated the behavior of either approach atbege factors.

CBSEM

As noted previously, CBSEM and PLS analysis areerdggdly two different
approaches to the same problem. Both start frorsdhee set of theoretical and measurement
equations but differ in how they approach the patamestimation problem. Assume a
structural equation model with a set of latent eeranys variables{) measured by indicators

X; and associated measurement edorand a set of latent endogenous variablg$ (

measured by indicators gind associated measurement egoif all latent variables in the

11



model are assumed to be measured by reflectiveatats, this structural equation model
results in the following set of theoretical and sw@ament equations that describe the

relationships of the structural and measurementemoespectively:

n=Bn+r &+, (1)
X =N\ & + 90, and (2)
y=Ayn te. 3)

Starting with this set of equations, covarianceedaapproaches such as LISREL
estimate a vector of model paramet@&rso that the resulting covariance matrix predidigd
the theoretical modéal = 2(0) is as close as possible to the sample covariaatexns. This
estimation is usually conducted using maximum iil@dd, with the likelihood function F =
log E| — log [S] + tr (5Y) — k, where |A| denotes the determinant of AA)ri¢ the sum of the
diagonal elements of A, and k is the total numbemanifest variables (indicators). As
discussed, for example, by Long (1983), this ltketid function depends only on the vector
of independent parametes which consists of the free and constrained elésnefv\y, Ay,

B, andl’, as well agb, ¥, ©5, and®., which are the covariance matriceséot, &, ande,
respectively. If determined using ML estimation.e tlestimated vector of the model
parameters resulting from CBSEM is asymptoticaffjcient within the class of consistent
estimators and can be considered optimal in that the most precise for large samples
(Godambe 1960).

Number of indicators per construct: As Long (1983) notes, CBSEM requires a
minimum number of indicators to ensure model ideraiion because the sample covariance
matrix S must include at least as many non-redunelements as the number of parameters
to be estimated by the model. Baumgartner and Hogn(i996) go even further and state
that every latent variable should be measured wsingast three to four indicators to ensure

12



meaningful results. Furthermore, the general cawseiseems to be that an increase in the
number of indicators is associated with positivee@t. For example, Velicer and Fava
(1987) show that more indicators decrease the afsiknproper solutions, and Marsh and
colleagues (1998) suggest that more indicatordguéor lead to more proper solutions, more
accurate parameter estimates, and greater retyabilhese findings, however, are true only
up to a certain limit, because too many indicateesl to excessive power for the goodness-
of-fit tests (MacCallum et al. 1996), which in tummay significantly limit the usefulness of
CBSEM (Haenlein and Kaplan 2004).

Sample size: Sufficient sample size is necessary for both Mind GLS-based
CBSEM to ensure model identification because CBSEeMuires the sample covariance
matrix S to be positive-definite, which is only gaiateed when the sample size exceeds the
number of indicators (Long 1983). Additionally, ainimum sample size is required to
generate results of sufficient accuracy due to abgmptotic property of ML estimation.
Consistent with this thinking, Gerbing and Ander®f85) show that the standard error of
model estimates decreases with increasing sampée As a rule of thumb, sample size
should exceed 200 cases in most situations (BoonmmaHoogland 2001), and several
strategies have been recommended if the availabtele size falls below this threshold,
including item parceling (e.g., Marsh et al. 198@sser and Wisenbaker 2003) or the use of
alternative estimation techniques such as unwaiglgast squares (Balderjahn 1986). Yet
these strategies can be associated with signifitskg (e.g., Kim and Hagtvet 2003) or may
not be applicable in all situations.

Distribution of indicators: As already highlighted by Joreskog (1967), MLdxhs
CBSEM requires that the observed variables havetimouinal distribution. In reality,
however, it is unlikely that empirical research Iwédlchieve this goal (Micceri 1989).

Therefore, several authors have investigated tiheber of ML-based CBSEM with non-

13



normally distributed indicators, and it has beeovah that in this case, standard errors in
CBSEM tend to be inflated (Babakus et al. 1987). wAth responses to the problem of
limited sample size, item parceling (Bandalos 2082¢l alternative estimation techniques
(Sharma et al. 1989) have been recommended as fur@s®n-normally distributed input
data.

Indicator loadings. Badly operationalized constructs represent alprolfor any type
of empirical analysis, as they hinder the constoacof theoretical knowledge. Therefore, a
set of items used for construct operationalizasibauld be both reliable and valid (Churchill
1979). Construct reliability can be expressed &sation of indicator loadings, and higher
average loadings coincide with higher reliabilitgefbing and Anderson 1988). Because
reliability pertains to the share of variance caluisg (undesired) random error, high loadings
are generally preferred over low ones. With respeefriability in the loadings of indicators
that belong to the same construct, the case bectasgeslear. Assuming constant average

loadings (i.e., A, +A, =2\ for two indicators), the average variance extcd¢fornell and

Larcker 1981), which is a measure of constructdtgii will be minimal if the loadings are
equal for all indicators of the same construct.réfee, unequal loadings should be preferred
over equal ones because they lead to higher walifiitis statement also fits with the opinion
that an overly high degree of item homogeneity khdwe avoided because it may indicate

item redundancy (Boyle 1991).

PLS

Developed by Herman Wold (who was Joreskog's dacttadvisor), PLS analysis
differs from CBSEM in that it works not with latebut with block variables, which are
derived as weighted composites of their associateserved variables and are, hence,

considered as observable themselves (Rigdon 200Bg PLS estimation approach

14



essentially consists of an iterative sequence of @kgressions that starts with an outside
approximation, during which the latent variablestitd model are approximated by a linear
combination of their indicators. For this processet of weights is determined in a manner
similar to principal component analysis for refleetand regression analysis for formative
indicators. In the next step, the inside approxiomatalternative case values are determined
as weighted means of those block variables thatadjacent within the structural model.
Different ways to define adjacency associated witferent weighting schemes are available
(e.g., centroid, factor, path), but it has beemmshthat the choice among them has only a
minor impact on the final result (Lohmdller 1988)sing these new case values, the initial
weights are modified, and the process of outsick iaside approximation restarts and is
repeated until the case values converge.

Number of indicators per construct and sample size: PLS analysis works not with
latent variables but with block variables, whicle a@efined as linear combinations of sets of
indicators that usually involve measurement erftwe block variables are therefore not free
of error themselves. Hence, the scores determimedaich block variable and each case, as
well as the associated parameter estimates, musinsgdered inconsistent. They converge to
their true population values only when both the hamof indicators per construct and the
sample size increase to infinity (Hui and Wold 1982hneeweiss 1993)—a property referred
to in the literature as “consistency at large.’réal-life situations, PLS therefore tends to
underestimate the parameters of the structural made overestimate those of the
measurement model (Dijkstra 1983). As with CBSEMgcreasing sample size can be
expected to decrease parameter variance. Howewen @ certain number of indicators,
even an unlimited increase in sample size will result in unbiased estimates, and given a
certain sample size, any increase in the numberdi¢ators per construct can only partially

decrease the variation in parameter estimatesurin PLS analysis is particularly suited to
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cases in which CBSEM reaches its limits, such asmathe number of indicators per latent
variable becomes excessively large (as is the dasegxample, in functional magnetic
resonance imaging (fMRI) studies; see Haenleinkaqulan 2004) or when the sample size is
small. For example, a Monte Carlo simulation caroet by Chin and Newsted (1999) shows
that PLS can glean meaningful information from skngizes as low as 20.

Distribution of indicators: As a limited-information approach, PLS only builds
mild statistical assumptions regarding the propserdf the indicators and is therefore often
described as a “soft modeling” technique to difftiae it from the “hard modeling”
CBSEM approach. Specifically, PLS does not imposg eequirements regarding the
distribution or measurement scale of indicatordu$&®jkstra 1983). The only characteristic
that must be fulfilled is that the systematic pmmtiof all linear OLS regressions must be
equal to the conditional expectation of the depahdariables (Wold 1975). This condition,
which is often referred to as a “predictor speaifien”, implies that the inner model is a
causal chain system with uncorrelated residualstiaaidthe residual that belongs to a given
endogenous latent variable is uncorrelated withctireesponding predictor latent variables.
The stability of PLS parameter estimates in thesgmee of non-normally distributed data has
also been confirmed in a Monte Carlo simulationiedrout by Cassel, Hackl, and Westlund
(1999).

Indicator loadings: With respect to indicator loadings, the same potifigst we
discussed with regard to CBSEM apply. NeverthelesS§ can be expected to be more robust
in the presence of inappropriately operationaligedstructs, as the simultaneous estimation
approach of CBSEM implies that one weak construitht kely influence all parameter
estimates and latent variables estimates, whiRL#®, such negative effects likely are limited

to the construct itself and variables in its dingaiximity.
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Study design

Because ML-based CBSEM results in asymptoticalfigieht and optimal parameter
estimates but relies on comparatively strong dataurmaptions, whereas PLS relies only on
the mild condition of predictor specification buiffers from the problem of consistency at
large, we argue that it is sensible to comparerdtative efficacy of these two approaches
within a set of conditions in which we expect onetlee other approach to reach its limits.
Such a comparison, which subsequently providesbt®s for identifying a set of rules
researchers can follow when choosing between Mied&BSEM and PLS analysis, is the
main objective of our manuscript.

Figure 1: Theoretical model

Structural modd!:

8, X, A M easurement modd!: A Vil -
A A
Sz Xmi2 L L Ykmi2) Ekmr2)
£ Mk
Omi2+1 Xyze1 [T Ay A | Yrwrz+) Ek(Mmi2+1)
2
A A
Y Xy 2 2 Yiw &M
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Design factors: We define the number of indicators per constarctour levels (M =
2, 4, 6, 8), sample size on five levels (N = 1080,%500, 1,000, 10,000), and the distribution
of indicators on three levels (skewness/kurtos®¥0; 1/6, 2/12.8 for the independent latent
variable). We specify the measurement model asctgpiin Figure 1. With respect to
indicator loadings, we consider three differentesasf equal standardized loadings (Iaus
A2=.5; medium:i;= Ap,=.7; high: .= X,=.9), as well as one case of unequal standardized
loadings £:=.5, 2,=.9)2 These four design factors and their associateeldespan a space of
240 scenarios (4 x 5 x 3 x 4), for each of which aaeried out 200 replications. These
simulations build on the theoretical model visuadizn Figure 1, which mirrors the structure
of a customer satisfaction index model (e.g., Hbetal. 1996). We chose this type of model
because it reflects the typical degree of compjefound for structural equation models
within the marketing discipline. Additionally, therappears to be some debate about the
preferable method of parameter estimation in thimtext. While the US customer
satisfaction index literature has estimated the ehoging PLS (Fornell et al. 1996), some
European modifications have applied CBSEM (e.guhBrand Grund 2000). Our population
model consists of one exogenogsdnd five endogenoug{ to ns) latent variables. The nine
path coefficientsy; to y; andp; to fs are assumed to have theoretical values of eitl), O
0.30, or 0.15, to represent strong, medium, andkvpegoulation effect sizes, respectively
(Cohen 1988).

Data generation process. Generally, researchers can choose between tverett
methods of generating data for Monte Carlo simaotetiin the SEM context. The first
method starts by calculating the covariance matfithe observed indicators implied by the

model and subsequently generates data from a rad#te distribution with the same

% The error variance of each indicator can be détemunas one minus the respective squared loadimg AVE
is equal to the average of squared loadings ancehisr0.25 for low equal loadings, 0.49 for mediegoal
loadings, 0.81 for high equal loadings, and 0.53uftequal loadings.

18



covariance matrix. Fleishman (1978) and Vale andurgli (1983) have proposed
approaches consistent with this method, which teeen applied previously (e.g., Sharma et
al. 1989). This technique is appropriate when #tenit variables are assumed to be normally
distributed, as the linearity inherent in the moaeplies that the indicators will also have a
normal distribution. It becomes, however, less appate when this assumption is not met.
In these situations, another technique proposedhbitson (1997) and later applied by
Reinartz, Echambadi, and Chin (2002) is preferabités method generates data first for the
latent variables within the structural model andbsmguently for the observed indicators
according to the relationships defined in the molfttson’s approach has two advantages
over the traditional technique described abovestFit is conceptually more satisfying
because the data-generation process follows therefieal model and the underlying
relationships embedded in it. Second, it allows domplete control of the common and
specific distributional characteristics of the tdtand manifest variables. It takes account of
the distributional characteristics of the laterdapendent variables and the latent dependent
error terms, and ensures that the error termsanflea only the distributional characteristics of
the related indicators. Mattson’s approach is culyeghe only one that enables researchers to
control the skewness and kurtosis of both latedt@servable variables simultaneously. To
the best of our knowledge, this research repredbatBrst time Mattson’s approach has been
applied in the context of a Monte Carlo simulatather than in the general analysis carried
out by Reinartz et al. (2002).

Dependent variables: For each of the 48,000 replications, we calcutaee relative

error (RE) for the nine parameters of the stru¢ton@del ;1 to y; andp; to fe), defined as:

RE(é):‘%e (4)
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where @represents the theoretical value assumed for 8peotive parameter ard is equal
to the estimated value of the same parameter iiven geplicatiori: All simulations have
been conducted within the R computing environm¥etsion 2.7.0 (R Development Core
Team 2008) using theempackage (Fox 2006) and a proprietary implememiaticthe PLS

algorithm in the form as described by Tenenhauws. ¢2005)

Analysisand results
The objectives of our Monte Carlo simulation aneéfold. First, we are interested in
the conditions that must be fulfiled so that MLsed CBSEM converges to a proper
solution® Second, we want to compare ML-based CBSEM and Witl$ respect to their
parameter accuracy and identify the relative imgase of different design factors in driving
parameter error. Third, we intend to identify thatistical power of ML-based CBSEM and

PLS—that is, their ability to detect true relatibips among latent variables.

* For some analyses on an aggregate level, we aésbthe absolute relative error (ARE), equal toetheolute
value of RE, in order to avoid a canceling-out o$ifive and negative errors.

® The respective R codes used for data generatidthanestimation of the PLS model are availablenftbe
third author upon request.

®PLS, as a limited information approach that worlthwlock instead of latent variables, does nofesuffom
the problem of improper solutions.
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Table 3: Occurrence of proper solutions, conver gence problems and inadmissible solutions by design factor

Frequency of occurrence

Design factor Factor level Proper Gradient not At least one
solution closetozero negativevariance
Number of indicators 2 11,635 236 129
per latent variable 4 11,952 39 9
6 11,939 51 10
8 11,953 38 9
Indicator loadings Low equal 11,525 339 136
Medium equal 11,987 5 8
High equal 11,987 9 4
Unequal 11,980 11 9
Skewness and kurtosis none 15,824 127 49
moderate 15,825 118 57
high 15,830 119 51
Number of observations 100 9,149 322 129
250 9,536 36 28
500 9,596 4 0
1,000 9,600 0 0
10,000 9,598 2 0
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Proper solutionsin ML-Based CBSEM

In line with previous research, we define impropelutions as those estimates that
would be impossible (or implausible) for the cop@sding parameters (e.g., Bollen 1987;
Chen et al. 2001) and consider an ML-based CBSEMtisn as proper if the iteration
process converges to some solution and all variastimates for that solution are positive.
Table 3 shows the frequency of occurrence of prgpértions, convergence problems and
inadmissible solutions by design factor. Overal,99%6 of our simulations resulted in proper
solutions for ML-based CBSEM. For almost all scevsgrit is possible to achieve a proper
solution with a probability greater than 0.90. Ontythe worst case, i.e., 2 indicators per
construct, low equal loadings, and 100 observatimnge probability of achieving a proper
solution substantially lower, about 0.53. In ortteinvestigate the extent to which the design
factors included in our Monte Carlo simulation ughce the probability of achieving a
proper solution, we conducted a logistic regressamalysis in which we modeled the
properness of a solution as a function of indicktadings, the logarithm of the sample size,
the number of indicators and their distributforDur model significantly explains the
occurrence of proper solutions and results in adetde pseudo-R? statistics (Nagelkerke’s
R% 0.5123; McFadden’s R 0.4973). Based on this analysis, the occurrerfcgroper
solutions is significantly influenced by the samglee, indicator loadings, and number of
indicators, but not by the distribution of indicegtolmproper solutions are more likely in case
of smaller sample size and low equal indicator ilogsl Moreover, the influence of the
number of indicators is nonlinear. While decreadimg number of indicators from four to
two makes improper solutions significantly moreelik an increase in indicators from four to

six or eight does not result in significantly m@meper solutions.

" Details on this analysis are available upon reues
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Table 4: Minimum sample size necessary to achieve a proper solution with probability

greater than 0.975

Psychometric properties of indicators

Number of Previousresearch
indicators per Equal loadings Unequal (Boomsma and
construct Low Medium High loadings Hoogland 2001)
2 500 100 100 250 NA
4 250 100 100 100 200+
6 250 100 100 100 50+
8 250 100 100 100 50+

Previous research (Boomsma and Hoogland 2001 nkiastigated the minimum

sample size necessary to achieve a proper solasi@nfunction of the number of indicators

per construct but has not considered indicatoritggd The well-known rule of thumb that

ML-based CBSEM requires at least 200 observatior@oid problems of non-convergence

and improper solutions emerged from this prior w@h the basis of our findings, we

confirm that this rule is true on average but thiate variations depend on indicator loadings

(see Table 4). Based on our analysis, the minimammpe size ranges from as low as 100

(medium or high equal loadings) to a maximum of 86@ equal loadings and two

indicators per construct). Note that if the numbleindicators is low, it does make a

difference whether there are medium equal or medinegual loadings. In this case,

researchers are well advised to take indicatoritgmsdnto account when evaluating whether

their sample size is sufficient for ML-based CBSEM.
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Table5: Theoretical versusestimated parameter values (mean and standard deviation for parameter estimates and ARE)

. ML -Based CBSEM PLS
Theoretical - -
Parameter value Parameter estimate ARE Parameter estimate ARE
n c 1] c 1] c 1] c
Y1 0.5000 0.5005 0.0638 0.0795 0.0999 0.4079 0.0854 0.1950 0.1583
Y2 0.1500 0.1506 0.1015 0.3912 0.5522 0.1591 0.0550 0.2603 0.2650
Y3 0.1500 0.1485 0.1005 0.3443 0.5746 0.1594 0.0468 0.2252 0.2251
Average across By 0.5000 0.4990 0.0910 0.1057 0.1482 0.4012 0.0871 0.2093 0.1601
240 SCenarios B2 0.5000 0.5027 0.1188 0.1193 0.2055 0.4083 0.0814 0.1945 0.1493
B3 0.3000 0.2991 0.1013 0.1844 0.2829 0.2750 0.0556 0.1468 0.1407
B4 0.5000 0.4986 0.0594 0.0769 0.0905 0.4062 0.0862 0.1983 0.1599
Bs 0.5000 0.5000 0.0906 0.1052 0.1475 0.4001 0.0891 0.2130 0.1623
Be 0.1500 0.1488 0.0996 0.3825 0.5429 0.1603 0.0561 0.2613 0.2761
Y1 0.5000 0.4997 0.0074 0.0120 0.0086 0.4855 0.0072 0.0292 0.0142
Y2 0.1500 0.1504 0.0096 0.0504 0.0396 0.1538 0.0091 0.0525 0.0399
Y3 0.1500 0.1498 0.0075 0.0417 0.0277 0.1534 0.0072 0.0431 0.0307
By 0.5000 0.4998 0.0085 0.0138 0.0100 0.4839 0.0081 0.0323 0.0162
Ideal scenario B> 0.5000 0.5004 0.0083 0.0128 0.0105 0.4851 0.0078 0.0301 0.0149
B3 0.3000 0.2997 0.0077 0.0203 0.0158 0.2982 0.0073 0.0201 0.0149
B4 0.5000 0.4993 0.0068 0.0105 0.0088 0.4851 0.0067 0.0299 0.0130
Bs 0.5000 0.5004 0.0076 0.0118 0.0095 0.4844 0.0073 0.0314 0.0142
Bs 0.1500 0.1495 0.0099 0.0531 0.0391 0.1530 0.0094 0.0525 0.0401

Notes: In the first case (average across 240 soshamean and standard deviation refers to tharpeter estimates and the absolute relative ercoossathe 240 scenarios;
in the second case (ideal scenario), they reféraparameter estimates and the absolute relatioeseacross the 200 runs within the ideal scend@®000 observations, 8
indicators, equally high loadings, 0 skewness amntbkis). Means and standard deviations are caézlilzcross all Monte Carlo runs for which maximikellhood based

structural equation modeling provided a proper tsmtu
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Overall comparison of parameter accuracy in ML-Based CBSEM and PLS

To explore the overall performance of ML-based CBISEnd PLS in terms of
parameter accuracy, we compared the theoretical estonated values for the nine
parameters of the structural model across the 2d@asios analyzed and for an “ideal” case.
As can be seen in Table 5, on average across @ls@dnarios, parameter estimates do not
differ significantly from their theoretical value®r either ML-based CBSEMp{values
between 0.3963 and 0.5621) or Plsvélues between 0.1906 and 0.3449). Nevertheless,
ML-based CBSEM emerges as the more precise estimaiethod, as the mean parameter
estimates are much closer to their theoretical esmlior CBSEM than for PLS (absolute
difference 0.00-1.03% for CBSEM, 6.10-19.99% forSRLTherefore, if consistency
matters, ML-based CBSEM should be preferred oveés.PL

To further clarify the relative performance of Mlaged CBSEM and PLS in terms of
parameter bias, we also compared the absoluteveekatror (ARE) for all parameters in an
ideal scenario—i.e., the combination of differeasign factors for which the highest level of
parameter accuracy can be expected from a thealrpcspective. Using our review of prior
research, we define this scenario as the case thathmaximum number of indicators per
construct (M = 8), maximum (asymptotic) sample gie= 10,000), normally distributed
indicators (skewness = kurtosis = 0), and high kedpgdings A1 = A2 = 0.9). In such
conditions, estimates are virtually identical teititheoretical values for ML-based CBSEM,
which suggest-values between 0.745 and 0.957, an absolute elifter between the
theoretical and estimated parameter values ofthems 0.04%, and an ARE between 0.011
and 0.053. In other words, under optimal conditigrerameter estimates obtained by ML-
based CBSEM can be considered as accurate. FortR&Same is not true. Although in
general, the ARE is similar to the one for ML-ba&BISEM (between 0.020 and 0.053), the

ARE of strong effects is more than twice as largeimthe case of ML-based CBSEM.
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Moreover, the difference between the theoreticatl astimated parameter values is
significant p-values <.05 for eight of the nine effects) andssabtial (between 0.58% and
3.23%). Thus, even in an ideal case, PLS pathiceeits are biased and differ from the true
parameters of the structural model. Our analysidicates that, based on an overall

comparison, ML-based CBSEM dominates PLS in terhpaoameter accuracy.

Relative importance of different design factorsin driving parameter accuracy

After having compared the overall performance of-Mised CBSEM and PLS in
terms of parameter accuracy, we now analyze traivel importance of different design
factors in driving parameter error (i.e., bias amadation). In order to avoid the problem of
accumulatedx errors that would result from a large number @hvidual comparisons, we
compute the mean absolute relative error (MARE)ngef as the mean ARE across all

parameter estimates for each replication:

A

0, -0,

t
MARE = :t—LZ : (5),
j=1

j
where t equals the number of parameters (here: @),represents the theoretical value

assumed for the respective parameter, épdepresents the estimated value of the same

parameter in any given replication.
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Table6:

ANCOVA explaining log;o(MARE) by method (ML-based CBSEM/ PLS) and design

factor
Effect F df Sig. Partialn?
Intercept 5883.3361 1 0.0000 0.1105
# of indicators 57.8819 3 0.0000 0.0037
distributions 1.6795 2 0.1865 0.0001
loadings 188.3461 3 0.0000 0.0118
2 l0g10(N) 187146.9764 1 0.0000 0.7980
£ # of indicators x distributions 1.0163 6 0.4123  0.0001
g # of indicators x loadings 67.4141 9 0.0000 0.0126
_ﬁi # of indicators x logy(N) 229.1549 3 0.0000 0.0143
% distributions x loadings 0.0338 6 0.9998 0.0000
g distributions x logg(N) 1.1896 2 0.3043 0.0001
g loadings x logy(N) 927.3734 3 0.0000  0.0555
& # of indicators x distributions x loadings 0.0653 18 1.0000 0.0000
# of indicators x distributions x lggfN) 0.9267 6 0.4743 0.0001
# of indicators x loadings x lggfN) 2.3772 9 0.0000 0.0039
distributions x loadings x lgg(N) 0.0269 6 0.9999 0.0000
# of indicators x distributions x loadings x {g(dN) 0.0484 18 1.0000 0.0000
Error 47383
method 88431.9109 1 0.0000 0.6511
method x # of indicators 1054.4940 3 0.0000 0.0626
method x distributions 0.4973 2 0.6082  0.0000
method x loadings 2849.0200 3 0.0000 0.1528
" method x logy(N) 127735.4391 1 0.0000 0.7294
g method x # of indicators x distributions 0.9632 6 0.4484 0.0001
il method x # of indicators x loadings 16.5847 9 0.0000 0.0031
£ method x # of indicators x logiN) 1261.7954 3 0.0000 0.0740
% method x distributions x loadings 0.1234 6 0.9936 0.0000
‘g method x distributions x lag(N) 0.2625 2 0.7691 0.0000
£ method x loadings x lqg(N) 3974.2111 3 0.0000 0.2010
= method x # of indicators x distributions x loadings 0.1636 18 1.0000 0.0001
method x # of indicators x distributions x |gdN) 1.0405 6 0.3965 0.0001
method x # of indicators x loadings x {g(N) 33.9025 9 0.0000 0.0064
method x distributions x loadings X lg@N) 0.1246 6 0.9934  0.0000
method x # of indicators x distributions x loading®g;o(N) 0.1340 18 1.0000 0.0001
Error(method) 47383

Notes: Includes only cases in which CBSEM resditbedl proper solution.

27



In Table 6, we provide the ANCOVA results for a eulxeffects model explaining
parameter accuracy operationalized aso®ARE) as a function of the estimation method
(ML-based CBSEM vs. PLS), the four design factonsl gheir interaction&.This model
shows that parameter accuracy is virtually unaéi@diy non-normality of the data. Neither
the main effect nor the moderating effects of tigritbution of indicators is significant. As
the distribution of indicators has therefore naithebetween-subjects nor a within-subjects
effect, we can conclude that the accuracy of bothbldsed CBSEM and PLS is independent
of the distribution of indicators. All other desigactors require a more differentiated
assessment.

The between-subjects effects explain the variancearameter error that both ML-
based CBSEM and PLS share. Here, we note thantmction of sample size x indicator
loadings is the only relevant interaction effecar(@l n2: 0.0555). All other interaction
effects are either not significant or not substdr(iie., they have a partigf clearly below
0.02). Regarding the main effects, sample size thasstrongest impact on parameter
accuracy, contributing by far the most to explagnithe variance in MARE (partiaj?:
0.7980). The main effects of indicator loadings #mel number of indicators are significant

but not substantial.

8 We take logy(MARE) instead of MARE to avoid floor effects.
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Figure2: Mean absoluterelativeerror (MARE) of CBSEM and PL Sfor different numbersof indicators and loading patterns
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The within-subjects effects describe the differsnce accuracy between ML-based
CBSEM and PLS. The most relevant highest-order imasiabjects effects are the two
interaction effects method x loadings x sample sizé method x number of indicators x
sample size. Both interaction effects subsume aéwaghly significant lower-order effects.
Although the main effect of the estimation methelf is strong and significant (partigd:
0.6511), suggesting that the two methods, ML-ba&SB&EM and PLS, differ strongly in
parameter accuracy, these substantial interactioegent a straight preference for either
method. Figure 2 displays the estimated marginansef MARE along both interactions.
The clear crossover interactions of MARE imply ttia@ priority of methods alters with an
increase in sample size. For small sample size§ féhds to feature a higher level of
accuracy than ML-based CBSEM, while the oppositérug for medium-sized and large
samples. Besides these effects, we also identifgemade interaction effects of sample size,
method and indicator loadings (Partigl 0.2010) and as method and loadings (Pauial
0.1528), indicating that the two methods are nataly sensitive to the psychometric
properties of indicators. In sum, we can conclude ML-based CBSEM clearly outperforms
PLS in terms of consistency. While ML-based CBSEMable to recover the population
parameters on average, PLS path coefficients sysieaily deviate from the true parameter
values. Moreover, ML-based CBSEM is preferableemmis of parameter accuracy as long as
the sample size exceeds a certain threshold. Be#dsathreshold (about 250 observations in

our case), PLS provides estimates with a lower MARE

Statistical power of ML-Based CBSEM and PLS
The statistical power of a significance test reterthe probability of rejecting a false
Ho, given a certain population effect size, sampte,sand significance criterion. [if is the

probability of a Type Il error (i.e., failure tojeet a false ), power can be expressed as 1 —
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B (e.g., Cohen 1992). Sufficient statistical powectscial, especially in the early stages of
theory development, when the focus lies on idemigfypotentially significant relationships
that could exist rather than confirming the sigrafice of relationships whose existence can
be assumed based on ample prior research. Oneeom#in reasons provided for the
methodological choice of PLS rather than ML-bas&BEM is its focus on prediction and
theory development (see Table 1). Therefore, adigihpinderstanding seems to exist that
statistical power can be expected to be highetL® than in ML-based CBSEM.

To verify this implicit belief, we determined thaase of (proper) solutions for ML-
based CBSEM and PLS in which the relationships bebhahe latent variables specified in
our structural model (i.e., the nine path coeffit$ef3; to Bs andy; to ys3) have not been
rejected. While CBSEM instantly provides t-statstifor the path coefficients that can be
used to perform such a significance test for theupater estimates, we used bootstrapping
(without sign correction) with 200 resamples toanbtstandard errors for the PLS path
coefficient estimates. We analyzed the statispcaver of the two methods on an aggregated
level and determined the frequency with which eadthod detects a significant (p< 0.05)
effect for all 240 scenarios. We hereby distinguisttween three groups of effects,

depending on the population effect size: strongot$f {1, B1, B2, Ba, Bs), medium effects

(B3), and weak effectsy, ys, Be).
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Table7:

Statistical power (a = 0.05) of CBSEM and PLS

Design Factors low effect size medium effect size high effect size
(B=.15) (B=.30) (B=.50)

Sample size Loadings Indicators CBSEM PLS CBSEM PLS CBSEM PLS
2 0.01 0.24 0.01 0.47 0.16 0.59
Low 4 0.05 0.36 0.09 0.61 0.47 0.86
(.5/.5) 6 0.07 0.43 0.31 0.79 0.69 0.94
8 0.09 0.47 0.36 0.85 0.80 0.96
2 0.09 0.38 0.33 0.76 0.75 0.93
Mggﬁz‘te 4 018  0.44 051  0.85 096  0.99
(71.7) 6 0.24 0.47 0.80 0.92 0.98 0.99
100 8 0.27 0.45 0.81 0.95 0.99 0.99
2 0.09 0.41 0.39 0.84 0.83 0.98
'\('J‘r’]‘;zrua;le 4 0.29 0.44 0.80 0.94 1.00 1.00
(51.9)l 6 0.33 0.48 0.90 0.94 1.00 0.99
8 0.36 0.45 0.93 0.95 1.00 1.00
2 0.28 0.40 0.84 0.93 0.99 1.00
High 4 0.31 0.41 0.91 0.96 1.00 1.00
(.91.9) 6 0.40 0.46 0.94 0.95 1.00 0.99
8 0.39 0.43 0.95 0.96 1.00 1.00
2 0.05 0.54 0.16 0.90 0.54 0.90
Low 4 0.20 0.74 0.51 0.96 0.95 0.99
(.5/.5) 6 0.23 0.76 0.80 1.00 0.99 1.00
8 0.34 0.84 0.88 1.00 1.00 1.00
2 0.31 0.76 0.78 0.99 0.99 1.00
Mggﬁ;ﬁ‘te 4 0.45 0.81 0.95 1.00 1.00 1.00
(71.7) 6 0.48 0.77 0.99 1.00 1.00 1.00
250 8 0.60 0.83 1.00 1.00 1.00 1.00
2 0.36 0.80 0.88 1.00 1.00 1.00
'\6(:122?;? 4 0.62 0.82 1.00 1.00 1.00 1.00
(5/.9) 6 0.63 0.77 1.00 1.00 1.00 1.00
8 0.72 0.83 1.00 1.00 1.00 1.00
2 0.62 0.80 1.00 1.00 1.00 1.00
High 4 0.72 0.80 1.00 1.00 1.00 1.00
(.91.9) 6 0.68 0.75 1.00 1.00 1.00 1.00
8 0.76 0.81 1.00 1.00 1.00 1.00
2 0.13 0.78 0.31 0.97 0.86 1.00
Low 4 0.33 0.94 0.77 1.00 1.00 1.00
(.5/.5) 6 0.48 0.97 0.96 1.00 1.00 1.00
8 0.58 0.98 0.99 1.00 1.00 1.00
2 0.46 0.96 0.91 1.00 1.00 1.00
Mggﬁ;‘te 4 0.73 0.98 1.00 1.00 1.00 1.00
(71.7) 6 0.79 0.97 1.00 1.00 1.00 1.00
500 8 0.87 0.98 1.00 1.00 1.00 1.00
2 0.64 0.97 1.00 1.00 1.00 1.00
'\l"fr’gzza;f 4 0.90 0.98 1.00 1.00 1.00 1.00
(5/.9)l 6 0.91 0.97 1.00 1.00 1.00 1.00
8 0.93 0.98 1.00 1.00 1.00 1.00
2 0.85 0.97 1.00 1.00 1.00 1.00
High 4 0.94 0.98 1.00 1.00 1.00 1.00
(:91.9) 6 0.93 0.95 1.00 1.00 1.00 1.00
8 0.96 0.97 1.00 1.00 1.00 1.00
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2 0.29 0.95 0.67 1.00 0.98 1.00

Low 4 0.59 1.00 0.99 1.00 1.00 1.00
(.5/.5) 6 0.80 1.00 1.00 1.00 1.00 1.00
8 0.87 1.00 1.00 1.00 1.00 1.00

2 0.79 1.00 1.00 1.00 1.00 1.00

Mggﬁ;‘te 4 095  1.00 100  1.00 100 1.00
(71.7) 6 0.98 1.00 1.00 1.00 1.00 1.00
8 0.99 1.00 1.00 1.00 1.00 1.00

1000 2 0.94 1.00 1.00 1.00 1.00 1.00
'\l"fr’]‘i‘e;ua;f 4 0.99 1.00 1.00 1.00 1.00 1.00
(.51.9)| 6 0.99 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00

2 0.99 1.00 1.00 1.00 1.00 1.00

High 4 1.00 1.00 1.00 1.00 1.00 1.00
(:91.9) 6 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Includes only cases in which CBSEM restitteal proper solution. In case with 10,000 obseovej a

statistical power of one was obtained for all ctinds.

Table 7 compares the statistical power of ML-baSBSEM and PLS for low,
medium and high population effect sizes based oeetlilesign factors (i.e., sample size,
indicator loadings and number of indicatot#)s can be seen, the statistical power of PLS is
always larger than or equal to that of ML-based EBISTo put it differently, the minimum
sample size necessary to achieve a given levaht$tical power in PLS is always less than
or equal to the size required for ML-based CBSENY @ many cases, ML-based CBSEM
needs twice as much information as PLS to avoideTVperror. To the best of our

knowledge, ours is the first quantitative studyt t@nfirms the widespread belief that PLS is

° With respect to our analysis of power, one coutfia that our comparison of ML-based CBSEM with R4S
inappropriate because the two methods use diffevaps of determining the standard error of thenessties:
parametric assumptions in the case of ML-based GB8&d bootstrap in the case of PLS. However,
comparing the two approaches using the same mattaetermining the standard error of the estimagesns
inappropriate. On the one hand, it has been shbatprametric assumptions always lead to higladisstal
power than does bootstrapping in the context of bdlsed CBSEM (Nevitt and Hancock 2001). Additionally
applied research only rarely relies on bootstragpirthe context of ML-based CBSEM, except for the
calculation of goodness-of-fit measures (Bollent&& 1993). On the other hand, using parametrigrapions
in the context of PLS leads to inflated Type | esr@Goodhue et al. 2006).
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preferable to ML-based CBSEM when the researchsfdi@s in identifying relationships
(i.e., prediction and theory development) insteddamfirming them. Table 7 is one of the
few published power tables for PLS, next to Chid Blewsted (1999) and Chin et al. (2003).
It is an essential tool for researchers who wantidtermine the statistical power of their
estimation method given a particular populatioreetffsize, sample size and measurement

model quality.

Discussion

In our introduction, we recognized the increasintgliest researchers in marketing
have paid to PLS in recent years. Neverthelesse thppears to be an implicit agreement
regarding the factors that should drive the methmgical choice between the more
traditional ML-based CBSEM and PLS—but no reseanels until now compared the
performance of the two approaches in different ages. We therefore conducted a set of
Monte Carlo simulations to address this issue. &@hamulations rely on 240 scenarios,
defined according to a full-factorial design of falesign factors (number of indicators per
construct, sample size, distribution, and indicédadings) and Mattson’s (1997) approach to
data generation. Specifically, our analysis hasnated to answer three research questions.
1) Which conditions need to be fulfilled so that Mased CBSEM converges to a proper
solution? 2) What is the difference in the parambias between the two approaches and the
relative importance of different design factorgdimving parameter accuracy? 3) What is the

ability of ML-based CBSEM versus PLS to detect trelationships among latent variables?

Theoretical | mplications
On the basis of our results, we can evaluate fotheofive main reasons provided for

a methodological choice between PLS and ML-base®&EMB, as cited in Table 1, and

34



develop a set of recommendations for that choioecaBse our population model only
includes constructs measured using reflective atdrs, we cannot make any statement with
respect to PLS performance in cases when formateasures predominate. In addition, we
do not discuss reasons that may favor a partiaukthod other than those that appear in
Table 1. Such reasons might include, for examle,availability of tests to judge overall
model fit and the suitability of an approach to ldepwith multi-level structures, growth
modeling, mixtures and/ or equality constraintsvétheless, our recommendations should
be useful for practicing researchers, among whoenetlseems to be high heterogeneity in
terms of the reasoning for choosing one method amether but no systematic quantitative
and empirical assessment to help rationalize thaice.

When assumptions regarding indicator distribution are not met: As highlighted
above, most authors cite a lack of assumptions rdegn indicator distribution and
measurement scale as their main reason for choddu®j over ML-based CBSEM. Our
results indicate that such a justification is ofteappropriate, as ML-based CBSEM proves
extremely robust with respect to violations ofutsderlying distributional assumptions. The
distribution of indicators impacts neither the €haf proper solutions for ML-based CBSEM
nor parameter accuracy in any significant and suibst manner, even in extreme cases of
skewness and kurtosis. Although PLS does not lmnldny distributional assumptions, ML-
based CBSEM behaves so robustly in the case af tlaation that justifying the choice of
one approach over the other on the basis of thteifalone is not sufficient.

When the focus is on prediction and theory development: 15 of the 30 articles listed in
Table 1 justify the use of PLS based on a focupmdiction and theory development vs.
empirical confirmation of theoretically indicateclationships. Our comparison of the
statistical power of ML-based CBSEM and PLS cleaslypports this statement. The

statistical power of PLS is always larger than guad to that of ML-based CBSEM, and in
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many cases, PLS requires only half as much infoomaas ML-based CBSEM. With a
reasonable measurement model (e.g., four indicaiersconstruct with at least medium
loadings), PLS can achieve a statistical power .80 Gor medium population effect sizes
with a sample size as small as 100 and for wealulptipn effect sizes with about 250
observations. To achieve similar results, ML-baseBSEM requires 250 and 1,000
observations, respectively. However, in these anstances, PLS estimates must be expected
to be inaccurate by roughly 25% (ARE for M = 4, N180; medium equal loadings are
0.3035 for small effects and 0.2412 for medium affe Although this level of bias is
sufficiently low to reject the null hypothesis thie parameter value is zero, it may cast
doubt on the actual parameter estimate obtainedhvamould be interpreted with caution.
When sample size is small: The third most cited reason for using PLS is itisafulity
for small sample sizes. Our simulations show tha& Pan be a very sensible methodological
choice if sample size is restricted, since alred@® observations can be sufficient to achieve
acceptable levels of statistical power, given aaterquality of the measurement model.
Although parameter estimates may be inaccuratdisghdase, ARE depends much less on
sample size within PLS than it does within ML-ba&BISEM. Whereas sample size is by far
the most important factor driving parameter accyracML-based CBSEM, it plays a less
important role in PLS. Additionally, low sample sim PLS can easily be compensated for
by improving the number of indicators or by chogsindicators with higher loadings. It can
be derived from Figure 2 that PLS should be theéhowbf choice for all situations in which
the number of observations is lower than 250 (4B6€eovations in the case of less reliable
measurement models, i.e., low loadings and/or fesicators), while ML-based CBSEM
should be chosen otherwise. In the case of 100ngdisens, and if constructs are measured
with at least six indicators with at least mediwadings, the ARE falls between 0.2420 and

0.2747. In contrast, ML-based CBSEM shows an ARBvéen 0.2557 and 0.3178 in the
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same circumstances. This advantage of PLS is pkatig relevant when researchers plan to
use SEM in cases where the sample sizes requireldlfebased CBSEM is not available.
For example, Green, Barclay, and Ryans (1995) tigadse the impact of entry strategy on
long-term performance in the business word progessd graphics markets, where only 39
and 44 companies entered the market in the angbgsisd. However, in such situations,
researchers must pay particular attention to inoctp@ sufficient number of indicators per
construct. For example, of the eleven articlesabl& 1 that cite suitability for small sample
sizes as a reason for choosing PLS, eight are lmasedmple sizes less than or equal to 100.
Of these eight, only one (Qualls 1988) uses coatstroperationalized with at least six
indicators each. On the basis of our results, we@mage researchers to include the number
of indicators per construct as a factor when chapdetween PLS and ML-based CBSEM,
especially in the presence of limited sample sizes.

To avoid improper solutions: Several authors (Arnett et al. 2003; Reinartz e2@04;
Sirohi et al. 1998) have chosen PLS because it do¢ssuffer from identification and
convergence problems. While this reasoning is theeretically, we observe that improper
solutions are a relatively rare phenomenon thagcesf only 1.1% of our simulations.
However, especially when indicator loadings are,ldML-based CBSEM can require

significant sample sizes of more than 500 obseryaatto avoid them.

Limitationsand Areasfor Further Research

As with those of any Monte Carlo simulation, ourdings are valid only within the
boundaries of the scenarios we investigate, angl ahéy apply to the theoretical model on
which we base our simulations (Figure 1). Furtheenmave assume that all indicators in our
model are continuous, which rarely occurs in ra#éd. |Such increased precision of

information regarding the latent constructs is Ik influence our results. In general,
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however, our approach is substantially more comgitar those applied by other researchers
in similar situations, specifically due to the ueé Mattson’'s (1997) method of data
generation, which gives us confidence in the exevalidity of our results. Regarding areas
of further research, we believe that an extensfaruo study to misspecified models (see Hu
and Bentler 1998 for a similar analysis in the eahbf fit indices) and second-order factor
specifications could be very interesting. Furthemmajuestions surrounding PLS regarding
prediction and theory development, as well as utigability for an unlimited number of
formative indicators, deserve deeper investigatidfith respect to the first point, for
example, it would be very interesting to analyz#fedences in factor scores derived using
PLS and ML-based CBSEM in more detail. Theoretycalie focus on maximizing explained
variance, which lies at the heart of PLS, shouddi [0 better predictions than the estimation
approach that underlies CBSEM. In turn, many awgthend to choose PLS over CBSEM,
especially when factor scores are of particulaerggt, such as in the context of index
construction (e.g., Arnett et al. 2003; Fornelket1996). Tenenhaus and colleagues (2005)
suggest, however, that the differences in factorexcbetween ML-based CBSEM and PLS
are less a question of the estimation procedune din@ of the specific way in which factor
scores are calculated for both approaches. Inglkeific example they analyze, factor scores
that follow the logic of PLS for their calculatiobut use CBSEM estimates as input
parameters lead to results that are highly coedlatith traditional PLS factor scores. The
qguestion of whether their finding is idiosyncratec the example they investigate or can be
generalized to a broader setting seems highly aeken this context.

With respect to the suitability of PLS for modelgghwmany formative indicators,
MacCallum and Browne (1993) highlight several isstieat may occur when formative
indicators are predominant in ML-based CBSEM. Tfeee most recommendations involve

combining reflective and formative indicators iretform of a MIMIC model (J6reskog and
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Goldberger 1975) to avoid such problems. To ourwkaedge however, no study has
compared the relative advantages of this appraacthet use of formative indicators only or
the performance of PLS and ML-based CBSEM in batfes with Monte Carlo simulations.
This lack may be partly caused by the fact thatgineulation of formative indicators is a
nontrivial issue. All approaches currently usedjémerate artificial data in the SEM context
build on the assumption of reflective measuremelowever, formative indicators can be
expected to grow in importance because of theih ldggree of suitability for modeling
managerial constructs (Jarvis et al. 2003). Theeefwe recommend a focus on theoretical
ways to simulate formative indicators in the con®xSEM, probably building on Mattson’s
(1997) approach and investigating whether the fiselagical flow from latent constructs to

indicators to generate artificial data might besexied to formative measurements.
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