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The Effect of Environmental Uncertainty
on the Tragedy of the Commons

Sam AFLAKI
INSEAD, Decision Sciences Area, Blvd. de Constance, 77305 Fontainebleau, France. sam.aflaki@insead.edu

We model a common pool resource game under environmental uncertainty. A symmetric group of individuals

face the dilemma of sharing a common resource: each player chooses her consumption level and obtains

a corresponding share of the common resource; if the total consumption exceeds the sustainable resource

size, the resource deteriorates and all the players are worse off. We consider the effect of uncertainty about

the sustainable resource size on the outcome of this game. We extend the existing model (Rapoport and

Suleiman 1992, Budescu et al. 1995) in two ways: (a) we consider a general deterioration function in contrast

to the existing model in which any excess consumption results in total destruction of the common resource;

and (b) we consider the effect of ambiguity about the common knowledge probability distribution governing

the size of the common resource. We show for ambiguity-averse agents that increasing ambiguity about the

size of the common pool resource may lead to lower consumption, in contrast to existing results derived

under conditions of risk.
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1. Introduction

The problem of sharing common resources lies at the heart of many large-scale conflicts among

human societies today such as global warming and international usage of the planet earth’s non-

renewable resources. These problems typically entail tensions between individual rationality and

social efficiency. For example, a single country may benefit from not investing in clean energy

technologies and using cheaper technologies, such as coal, but this leads to a pollution of the global

commons through increased greenhouse gas emissions. Similarly, greater consumption of a natural

resource, such as fish, is individually desirable, but leads at the aggregate level to overfishing and

potentially catastrophic thinning of the overall fish population. Social dilemmas were made famous
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by a paper that Hardin published in Science (Hardin 1968), although the earlier version of the

problem was portrayed by Lloyd (see Lloyd 1977) and can be traced back to Aristotle (Barker

1948). They have been extensively studied in social psychology (Kopelman et al. 2002), political

science (Ostrom et al. 1992), decision sciences and economics (see e.g. Kollock (1998) and the

references therein).

This paper focuses on an important category of social dilemmas, namely the Common Pool

Resource (CPR) game. A CPR game is a situation where a group of individuals face the consump-

tion or appropriation of a common resource with an individual benefit and a social cost. The social

cost in a CPR game is that when aggregate consumption exceeds a certain level, the common

resource deteriorates, possibly completely. CPR games are the most common modeling form of the

tragedy of the commons and have been extensively studied both theoretically and experimentally

(see the references in Budescu et al. (1995), henceforth BRR). The main findings in this body

of research include recognizing the effect of individual differences and social value orientations

(Kuhlman and Marshello 1975), the positive effect of communication (Orbell et al. 1990) and the

positive effect of the mechanisms enforcing credible agreements such as iteration and reciprocity

(Axelrod and Hamilton 1981). The focus of this essay is the effect of environmental uncertainty

on the outcome of the CPR game. Specifically, we address the following question: will increased

uncertainty about the size of the available common resource lead to more or less consumption at

the Nash equilibrium to the CPR game?

Why look at environmental uncertainty? The impact of social uncertainty has been well studied

in the literature and findings have been robust: the mechanisms that reduce social uncertainty

such as communication and formal governance are associated with more efficient outcomes (Dawes

et al. 1976, Kerr and Kaufman-Gilliland 1994, Orbell et al. 1990, Axelrod and Hamilton 1981)–that

is, in the presence of communication or formal governance, individuals consume less of the com-

mon resource. Binding agreements between countries, such as international protocols, proliferation

treaties and coordinated usage of the international resources can therefore be expected to lead to

better outcomes for all of the involved parties.
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A growing body of literature has considered the effect of environmental uncertainty on the

equilibrium outcome of the CPR games. While in this case there have been mixed messages, most

researchers suggest that under reasonable assumptions about the amount of uncertainty associated

with the resource, more environmental uncertainty leads to more selfish behavior (Messick et al.

1988, Rapoport et al. 1992, Hine and Gifford 1996, Wit and Wilke 1998, Grling et al. 1998,

Gustafsson et al. 1999, Biel and Grling 1995). The dominant view in the growing experimental

economics literature about environmental uncertainty is also that it encourages defection, both in

single-shot and repeated settings (Budescu et al. 1992, Rapoport et al. 1993, see e.g. BRR). In this

paper, we further explore this notion by extending previous work just mentioned, and by examining

the assumptions that lead to the conclusion that uncertainty leads to more selfish behavior. In

particular, we show that individuals might decrease their consumption in the presence of more

uncertainty depending on how uncertainty and individuals’ attitude toward it are modeled.

The specific model of the CPR dilemma studied here is based on that of Rapoport and Suleiman

(1992), henceforth referred to as RS. RS propose a game where individuals decide on their own

appropriation levels simultaneously facing a common knowledge distribution about the available

common resource size. The resource size is then realized by a risky random variable X̃. If the

sum of individual appropriations (the total consumption) exceeds the realized value, the resource

is destroyed and all players receive zero. Else, each player receives her own request. This is the

only model of CPR games under uncertainty of which we are aware. BRR show that the Nash

Equilibrium (abbreviated as NE) is a good predictor of the players’ behavior in this game in the

lab. RS and BRR both show that, under reasonable assumptions, if the risk associated with the

resource size is high, increased risk about the resource size leads to more consumption.

Our model extends the RS/BRR model by relaxing two assumptions that lie at the heart of their

model. First, they assume that the payoff structure is a step function. In other words, if the total

consumption exceeds the realization of the resource size, the resource is destroyed and all of the

players end up receiving nothing. They motivate this assumption by giving examples of biological

systems that are sustainable as long as a pre-determined resource threshold is not exceeded. In
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practice, however, it is possible that there is a sustainable threshold of the resource use, above

which the resource deteriorates (rather than being destroyed) with consequent reductions in the

players’ payoffs. Considering a general deterioration model of which RS and BRR’s model is a

special case, our model captures this gradual erosion process. Second, RS and BRR assume that

the nature of the uncertainty associated with the resource size is risk. In the decision sciences

literature, risk is referred to as a situation where knowledge about the outcomes is not absolute

but the probability of occurrence of each outcome is known. Hence risk might be thought of as a

first level degree of uncertainty. To go beyond risk, we present a symmetric CPR game similar to

the one presented in BRR, but the distribution of the resource size, represented by the random

variable X̃, is ambiguous. Ambiguity is a higher degree of uncertainty than risk, and arises where

outcomes are known, but the probability of each outcome is itself risky1.

Many behavioral researchers have already highlighted the importance of distinguishing between

the different types of environmental uncertainty (e.g. risk, ambiguity and pure uncertainty) in the

context of CPRs (Biel and Grling 1995), yet there are few game theoretical models to address

these differences. Our paper intends to fill this void by explicitly modeling the imprecision of the

probabilities. It should be noted, however, that although our setting is easier to motivate regarding

the nature of uncertainties that arise in practice, it is still highly stylized and is intended only to

demonstrate the importance of considering the nature of uncertainty associated with the resource.

As such, we strive for simplicity and parsimony, in particular by relying on the basic approach

proposed by RS and BRR, including symmetry of the players.

Our findings show that important insights can be obtained by considering different dynamics of

resource erosion in the context of the CPR game. Moreover, our results emphasize the importance

of a change in our view of the effect of uncertainty on the tragedy of the commons. We characterize

sufficient conditions under which the individuals’ consumption decreases when there is an increase

1 If the only change in the model were to introduce a second-order probability distribution, then not much would be
accomplished over the previous case of pure risk. However, as we will see, when preferences interact with the second-
order probability differences differently than for risky distributions, then differences in choice and in equilibrium
behavior can be expected.
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in the level of ambiguity about the (sustainable) resource size. In particular, when the players are

sufficiently ambiguity averse, an assumption that finds support in the literature (Ghirardato and

Marinacci 2002), then increased ambiguity about the probabilities leads to decreased consumption

and a more socially efficient outcome.

Our paper is not the first to note the effects of uncertainty on the efficiency of outcomes of

group choice. There is already some experimental evidence in the literature of group decision

making to support the idea of an efficiency enhancing effect of uncertainty on social behavior. For

example Gong et al. (2009) find that while in a deterministic prisoner’s dilemma game, groups

tend to cooperate less than individuals, yet this effect is reversed when uncertainty is present with

respect to the outcomes of the game. In an experimental setting, Apesteguia (2006) finds that in

the absence of learning, ’minimal information’ about the payoff increases the chance of pro-social

behavior. The present paper provides a formal framework to underpin these results for the CPR

setting.

The rest of the paper continues as follows. In Section 2 the CPR game with generalized payoff

is defined and initial insights from this model are derived. In Section 3, we present a model of the

CPR game under ambiguity and extend and contrast the results of this model to the model under

risk. Concluding remarks are presented in Section 4.

2. The CPR Game with Generalized Payoffs under Risk

Consider the CPR game under risk ΓR(n,u,FX̃ , h) defined as follows. A group of n individuals with

homogenous risk preferences represented by the vN-M utility function u(·) are provided with a

resource endowment with size X̃. X̃ is uncertain with a common knowledge probability distribution,

FX̃ . Throughout the paper, we assume that the support of X̃ is finite in the range [α,β], with

α< β. Each player i decides on a consumption level (ri), with the utility of u(ri). Player i’s payoff

depends on her own consumption ri and the total appropriation by the other players, r−i, as well

as the realization of the resource size. If the total consumption (r = ri + r−i) exceeds the resource

size, each player’s payoff is reduced by h(r, X̃) ∈ [0,1), so that the risky payoff for each player is

equal to:
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πi(ri, r−i) = u(rih(r, X̃)). (1)

The deterioration function h reflects the reduction in each player’s payoff due to the erosion of the

resource when demands exceed the sustainable level X̃.

Throughout the paper, we make the following assumption on the deterioration function h(r, X̃)2:

Assumption 1. h(r, x) is decreasing in r, increasing in x, and twice differentiable with respect

to r almost everywhere3.

Because we use the method of monotone comparative statics, which does not require the differen-

tiability assumption, most of our results can be generalized to the case where h is not differentiable.

2.1. Existence and Uniqueness of the Nash Equilibrium

The players’ expected payoff is equal to:

Πi(ri, r−i) =EX̃u(rih(r, X̃)), (2)

where the operator EX̃ represents expectation with respect to the random variable X̃. The best-

response function of player i is defined by r∗i (r−i) = argmaxri≥0 Π(ri, r−i). When r∗i (r−i) is increas-

ing, the CPR game is a game of strategic complements–i.e., each player’s consumption level is

increasing in the consumption of the others. Similarly, if r∗i (r−i) is decreasing, the CPR game is

one of strategic substitutes, where higher consumption by others decreases a focal player’s optimal

consumption. Because the game is symmetric in our setting, from now on, we drop the subscript i

from all of the functions related to a focal player i.

Define the marginal payoff from consumption as

m(ri, r−i) =
∂

∂ri

Πi(ri, r−i) =EX̃{u′(rih(r, X̃))
(
h(r, X̃)+ rih1(r, X̃)

)
}. (3)

The following proposition characterizes the strategies of the players based on the monotonicity of

m(ri, r−i) with respect to r−i.

2 The words increasing and decreasing are used in their weak sense unless it is stated otherwise.

3 A sufficient condition for this condition is that the number of kinks, the points where h is continuous but not
differentiable is finite.
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Figure 1 The kinked discounting function.

Proposition 1. If m(ri, r−i) is increasing (decreasing) in r−i then the CPR game with gener-

alized payoff is a game of strategic complements (strategic substitutes).

To illustrate Proposition 1, consider the following example, which we will revisit in subsequent

sections.

Example 1:

Consider the CPR game under risk ΓR where X̃ ∼U [α,β] and players have a power utility function

of the form u(z) = zc , with c > 0. Note that all such power utility functions belong to the CRRA4

family. Let the deterioration function be given by:

h(r, X̃) =
{

1 r≤ X̃
e−k(r−X̃) r > X̃,

(4)

Where players’ payoff gets discounted by an exponential term as a function of the deviation from

the realized size of the resource, if total consumption exceeds X̃. k is an index of the speed of the

rate of deterioration of the resource when overconsumption occurs. Figure 1 shows this function

for various values of k. Clearly, when k goes to infinity, for r > X̃ players receive zero, so that the

RS model is a boundary case of this example. The expected payoff of player i, as a function of her

own appropriation (ri), and the total consumption by others (r−i) is calculated as:

Π(ri, r−i) = EX̃u(rih(ri + r−i, X̃))

=
∫ β

ri+r−i

rc
i .

1
β−α

dx+
∫ ri+r−i

α

rc
i · e−k(ri+r−i−x) · 1

β−α
dx

4 Constant Relative Risk Aversion



8

=
1

kc(β−α)
rc

i

(
−(α−β)e−ck(ri+r−i−α) + ck(β− ri− r−i)+β−α

)
. (5)

We calculate the derivative of m(ri, r−i) with respect to r−i to obtain:

∂

∂r−i

m(ri, r−i) =
∂2

∂ri∂r−i

Π(ri, r−i) =
rc

i

(β−α)

(
(β−α)e−ck(ri+r−i−α)− 1

)
(6)

From (6) it is clear that when k is “sufficiently” large–i.e. the resource deteriorates quickly,

m(ri, r−i) is decreasing in r−i; hence the CPR game is a game of strategic substitutes. In particular,

the CPR game presented in RS, where k→∞ is a game of strategic substitutes. On the other

hand, when k is small enough, meaning that the rate of resource deterioration is slow, this is a

game of strategic complements: the more other players consume, the more each individual player

consumes in equilibrium.

So far, we have not imposed any assumptions on the monotonicity of m(ri, r−i). However, a

typical characteristic of the tragedy of the commons is that the marginal utility of consumption

for a focal player is never increasing in others’ consumption. In other words, marginal utility of

consumption for each player is always higher if others consume less, so according to Proposition

1, a typical CPR game is a game of strategic substitutes. Based on this observation we make

the following assumption throughout the rest of the paper. This assumption helps us obtain the

existence and uniqueness results5.

Assumption 2. (a) m2(ri, r−i)< 0. (b) ∀x, ri, r−i, −h11(r,x)

h1(r,x)
≤ 1

ri
.

Assumption 2(b) puts an upper bound on the degree of concavity of h. In other words the deteri-

orations functions that are “too concave” do not satisfy Assumption 2(b). In particular, we have

seen in Example 1 that Assumption 2 is satisfied for the deterioration function (4) if k is sufficiently

large.

Proposition 2. Suppose that players are risk averse. The Nash equilibrium of the CPR game

with generalized payoff under risk r∗∗R exists and is unique.

5 The subscript number in hi represents the derivative with respect to the ith argument.
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Proposition 3. Given risk averse players, the unique NE of the CPR game under risk is char-

acterized as the solution to

EX̃{u′(rh(nr, X̃))
(
h(nr, X̃)+ rh1(nr, X̃)

)
}= 0, (7)

truncated to6 the interval [α
n
, β

n
].

The lower boundary solution α
n
, arises when players agree to share the certain lower bound of

the resource size evenly. In this case, the players do not risk going into the uncertain region with

excessive consumption bids. This might be due to large risk aversion or due to drastic consequences

of exceeding the sustainable resource size. The other boundary solution β
n

arises when the players

are not sufficiently risk averse, or when the consequences of exceeding the sustainable threshold of

the resource size are less severe.

Example 1: Characterization of the NE

Consider Example 1, where k →∞. This is the case where exceeding the sustainable resource

size leads to total destruction of the resource, and the players receive nothing. This example is

extensively studied in BRR. The following result is a corollary of Proposition 3.

Corollary 1. The NE of the game ΓR(h,F,n,u) specified in Example 1, with X̃ uniformly

distributed on [α,β] when k→∞ is characterized by:

r∗∗1 = max{α
n
,

cβ

nc+1
}. (8)

We notice in this case that due to the extreme nature of the game, namely total destruction of the

resource if the total consumption exceeds the resource size, the upper bound NE never occurs. We

also observe that when individuals are highly risk averse (c is very small), then the lower bound NE

is the outcome of the game. This is also true when the uncertainty range about the resource size is

small, namely β−α≤ 1
nc

. If none of these is the case, the players go to the uncertain region, so that

the total consumption exceeds the lower bound of the distribution and there is some probability

of excess exploitation of the CPR.

6 The truncation operator τ(·;a, b) on the interval [a, b] is defined by τ(z;a, b) = max(a,min(z, b)).
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2.2. The Effect of Increased Risk

In this section, we consider the effect of increased risk associated with the resource size. We start

by defining what we mean by an increase in the risk. Recall that for any two distributions F

and G with the same mean, F second-order stochastically dominates G (F �SSD G), if for every

nondecreasing concave function u : R+ →R+ we have:
∫ +∞
0

u(z)dF (z)≥
∫ +∞
0

u(z)dG(z). Of interest

here is the fact that F �SSD G if F is obtained from G through a mean-preserving spread (see

Rothschild and Stiglitz 1970).

Let X̃(σ) denote the resource size, parameterized by an index σ which represents the amount

of risk associated with X̃, with a distribution function FX̃(x,σ). We will consider only parameter

changes that induce mean-preserving spreads. Thus, for σ2 ≥ σ1, we will say that there is an increase

in environmental risk in replacing X̃(σ1) by X̃(σ2) if FX̃(σ2) is a mean preserving spread of FX̃(σ1)

(so that also FX̃(σ1) �SSD FX̃(σ2)).

Let r∗∗(σ) be the set of the Nash Equilibria of the CPR game with generalized payoff as a

function of the uncertainty associated with the resource size. Recall that a nonnegative function

h(r,x) is log-supermodular (abbreviated log-spm) if for every rH ≥ rL, the ratio h(rH , x)/h(rL, x)

is nondecreasing in x. Proposition 4 provides sufficient conditions for the interior NE of the CPR

game to be increasing in parameter σ.

Proposition 4. Suppose that players are risk averse and the NE r∗∗R for ΓR(h, f,n,u) is an

interior solution (i.e. r∗∗R ∈ (α
n
, β

n
)). The following conditions are sufficient for r∗∗R to be increasing

in σ:

1. fX̃(x;σ) is log-spm in (x;σ);

2. ∀ri, r−i, x, u(rih(ri + r−i, x)) is log-spm in (ri, r−i).

Before we examine the conditions of the above proposition, we note that Proposition 4 distin-

guishes boundary and interior NE solutions with respect to the effect of uncertainty. In particular,

when the parameter of interest σ affects the lower bound, then relaxing the assumption of interior

solution as σ increases could lead to a potential decrease in the NE, as we show below for the
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uniform distribution.

A parameterized density function fX̃(σ) for the distribution FX̃(σ) is log-spm if the parameter σ

shifts the distribution according to the monotone likelihood ratio (Athey 2002). In our context, if

the increase in risk maintains a monotone likelihood ratio for the distribution, then the condition

of Proposition 4 is satisfied. For a simple distribution function such as the uniform distribution,

the parameter σ= β−α represents the risk associated with the distribution. It is straightforward

to verify that the uniform distribution, fX̃(x) = 1/(β−α) is log-spm in σ= β−α. This also holds

for the Gamma distribution family, with respect to each of the two parameters7.

Consider Condition 2 in Proposition 4. To illustrate this condition, consider the family of HARA8

utility functions u(z) = ζ
(
η+ z

γ

)1−γ

for the players. This large family of utility functions includes

CARA9, CRRA and power utility functions among others. Assuming this, Condition 2 of Propo-

sition 4 can be reduced to

(1− γ)
(
γη(h1(r, x)+ rih12(r, x))+ r2

i (h12(r, x)h(r, x)−h1(r, x)h2(r, x))
)
≥ 0. (9)

Based on (9), we can identify several sets of conditions, such that Condition 2 in Proposition 4 is

satisfied. For example, a CRRA utility function is obtained when we have η= 0. For CRRA utility

functions, risk aversion for players is characterized as γ ≤ 0. So one set of sufficient conditions

to satisfy Condition 2 in Proposition 4 is (i) risk averse players with CRRA utility function and

(ii) ∀r, x, h12(r, x)h(r, x) − h1(r, x)h2(r, x) ≥ 0 which is less restrictive than demanding h to be

supermodular. Another set of conditions can be obtained by considering CARA utility functions

which are obtained from the HARA family by letting γ→+∞ and η > 0. Hence the following set

of conditions is also sufficient for satisfying Condition 2 in Proposition 4: (i) players with CARA

utility functions and (ii) ∀ri, r−i, x we have h1(ri + r−i, x)+ rih12(ri + r−i, x)< 0.

7 The Gamma distribution function with its two parameters (k, θ) is represented by the following pdf: f(x;k, θ) =

xk−1 e−x/θ

θkΓ(k)
, for k, θ≥ 0. Note that a change in only one of the parameters never leads to mean preserving spreads.

8 Hyperbolic Absolute Risk Aversion.

9 Constant Absolute Risk Aversion



12

Figure 2 r∗∗1 as a function of σ. c = 0.25; n = 5; α+β
2

= 500.

Interestingly, under certain sets of conditions, Proposition 4 holds regardless of individuals’

attitude toward risk–that is interior NE of the CPR game is increasing in the parameter of interest

(in our case we are focusing on uncertainty), regardless of the players’ attitude toward risk. In other

words, in the context of Proposition 4, there exist sufficient conditions under which the attitude

toward risk is immaterial to the increased consumption. Risk averse players, as well as risk seeking

players may increase their consumption when uncertainty increases.

Example 1: Discussion of The Effect of Risk

We show in Figure 2 the Nash equilibrium of Example 1 for the case where k→∞. It is a kinked

function of σ = β − α consisting of two segments, the certain and the uncertain regions. In the

certain region (the boundary NE), the NE is decreasing in σ = β − α, as is also pointed out in

BRR. This is because by keeping the mean of the distribution fixed, increasing the variance results

in a reduction in α, which in turn leads to the reduction in the boundary NE. In the uncertain

region, as the range of the resource size distribution increases, the NE of the game also increases.

Note that the mean of the resource size is fixed (500), therefore this result is not due to a change

in the players’ belief about the expected value of X̃.

The deterioration function h has indeed an important role in determining wether or not the NE

is increasing or decreasing in σ. To show this, in Figure 3 we plot the slope of the NE as a function

of σ at a fixed σ= 300–i.e., d
dσ
r∗∗(σ)

∣∣
σ=300

as a function of k. Observe in Figure 2 that at σ= 300,
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Figure 3 The slope of the NE of the basic game under risk as a function of σ. c = 0.25; n = 5; α+β
2

= 500;

σ = 300

the NE is increasing in σ so the slope of r∗∗(σ) is positive. We can see that this is not the case for

all values of k (Figure 2 is for k→∞). In particular when k is low, the slope of the interior NE is

decreasing. In other words, when the deterioration of the environment is slow, the players decrease

their consumption when uncertainty increases. Note that this is not due to the fact that for a low

k the players share the lower bound of the resource size; this is an interior NE. For example, at

k= 1 and for the parameters given in Figure 3, the NE is equal to r∗∗ = 73.2, which is significantly

higher than the amount from sharing the lower bound of the resource, i.e. (500− 300)/5 = 40. So

unlike BRR, we argue that depending on the shape of the deterioration function, the interior NE

(i.e. the NE in the uncertain region) may be increasing or decreasing.

3. The CPR Dilemma Game under Ambiguity

In this section, we consider the effects of uncertainty about the probabilities (ambiguity) and show

that depending on the attitude of individuals toward ambiguity, the NE consumption level may

increase or decrease.

In the decision sciences literature, it is now well established that in certain situations (in particu-

lar in the gain domain) the decision makers (DMs) sometimes exhibit an aversion toward ambiguity

associated with the probabilities. In his classic paper, Ellsberg (1961) shows that individuals prefer

to bet on prospects with known probabilities rather than on “equivalent” prospects with ambiguous

probabilities, that is, individual DMs are ambiguity averse. Besides the wide evidence for individ-

ual ambiguity aversion in experimental and empirical studies (for extensive reviews see Fox and

Tversky (1995), Ghirardato and Marinacci (2002), Maccheroni et al. (2006)), this effect has also
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been evidenced in strategic environments such as stock markets (Hirshleifer 2001), although the

latter is still subject to ongoing discussion (see e.g. Du and Budescu 2005).

Define the CPR game under ambiguity ΓA(n,u,FX̃(σ̃), φ,Fσ̃(θ), h) as follows. The resource size

(X̃) is distributed with the probability function FX̃(σ̃) where σ̃ is itself a random variable with

the common knowledge distribution Fσ̃(θ), where θ is an index of ambiguity described bellow. To

capture the DM’s preferences in the presence of ambiguity, Klibanoff et al. (2005) propose a smooth

model of ambiguity aversion where for each plausible distribution function Fσ̃(θ), players’ expected

profit takes the following double expectation form:

π(ri, r−i) =Eσ̃φ
(
EX̃u

(
rih

(
ri + r−i, X̃(σ̃)

)))
. (10)

Here φ(·) is an increasing function representing players’ attitudes toward ambiguity, similar to the

way that utility function u(·) characterizes the players’ attitude toward risk. A linear φ represents

the preference of ambiguity neutral DMs, implying that they are indifferent between betting on a

risky prospect with known probabilities and an ambiguous prospect with risky probabilities.

Example 2: Ambiguity Neutral Players

Consider ΓA where X̃ ∼U [0, σ̃] and σ̃∼ [σ̄−θ, σ̄+θ] with σ̄ > θ, u(z) = zc with c > 0 and φ(z) = z.

We set α = 0 in this example in order to rule out the boundary solution of Example 1 (α
n
), and

β = σ̃ to simply represent the amount of risk associated with the sustainable resource size. Here, σ̄

represents the uncertainty associated with the payoff (risk), whereas θ is an index of the uncertainty

about the distribution of resource size. Let k→∞ (full exhaustion of the resource) and φ(z) = z.

Observe that when θ = 0, this is exactly equivalent to Example 1. Because φ(z) is linear, the

expected profit of player i is equal to:

Π(ri, r−i) = Pr(ri + r−i ≤X).u(ri)

= Eσ̃

{rc
i (σ̃− ri− r−i)

σ̃

∣∣σ̃≥ ri + r−i

}
.

Let r∗∗AN(σ̄, θ) be the NE of this game with ambiguity-neutral players, as a function of the amount

of risk (σ̄) and the amount of ambiguity (θ).
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Figure 4 (a) The NE of the CPR game under ambiguity with ambiguity neutral players. (b) The NE of the

CPR game under ambiguity with extremely ambiguity averse players. c = 0.25; n = 5; σ̄ = 500.

Remark 1. The NE of ΓA specified in Example 2 is unique and is equal to

r∗∗AN(σ̄, θ) =
−λ(σ̄+ θ)

nW
(
−λ(σ̄+ θ) exp

{
λ− ln(σ̄+ θ)

}) , (11)

where λ= cn
1+cn

and W (·) is the Lambert W function.10 Furthermore, is r∗∗(σ̄, θ) is increasing in

both arguments.

Remark 1 makes the point that if the players are ambiguity neutral, increased uncertainty leads

to increased consumption in agreement with the results presented in the previous section (see

Figure 4(a)). This is not surprising. In an expected utility framework, when players are ambiguity

neutral, one can just calculate the second-order mixture probability measure, combining the two

distribution functions, to obtain a new probability distribution to calculate the expected payoff of

the players, similar to what we discussed in the previous sections. Increase in the risk associated

with each of the initial probability measures results in an increase in the risk (associated with the

distribution resulting from the convolution of the two probability distributions), hence having a

similar effect to the one we discussed in the previous section. However, as we shall see in the next

section, this is not the case when the DMs are ambiguity averse.

3.1. Ambiguity-Averse Players

The smooth ambiguity model by Klibanoff et al. (2005) characterizes ambiguity aversion by a

concave φ(·). Let H(ri, r−i; σ̃) =EX̃u
(
rih(ri + r−i, X̃(σ̃))

)
. With a non-linear ambiguity function

φ(·), the expected payoff of each player is calculated as:

10 Lambert W is the inverse function of f(w) = wew.
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Φ(ri, r−i) =Eσ̃φ(H(ri, r−i; σ̃)). (12)

The optimal strategy r∗i (r−i) is the solution of the following optimization problem:

max
ri

Eσ̃ {φ (H(ri, r−i; σ̃))} . (13)

Let ψ(ri, r−i; σ̃) =
∂2

∂ri∂σ̃ H(ri,r−i;σ̃)
φ′(H(ri,r−i;σ̃))
φ(H(ri,r−i;σ̃))

∂
∂ri

H(ri,r−i;σ̃) ∂
∂σ̃ H(ri,r−i;σ̃)

.

Proposition 5. The following conditions collectively are sufficient for the NE of the CPR game

ΓA(n,u,FX̃(σ̃), φ,Fσ̃(θ), h) under ambiguity to be decreasing in the ambiguity index θ:

1. EX̃h(·, X̃(σ̃)) is increasing in σ̃;

2. H(ri, r−i; σ̃) is increasing in ri.

3. fσ̃(σ, θ) is log-spm in (σ, θ);

4. −φ′′(H(ri,r−i;σ̃))

φ′(H(ri,r−i;σ̃))
≥ψ(ri, r−i; σ̃),∀ri, r−i, σ̃.

The first condition of Proposition 5 states that the expected deterioration is increasing in the

amount of risk associated with the distribution. For a step deterioration function, where the

resource is destroyed completely if total consumption exceeds the sustainable resource size, The

first condition of Proposition 5 amounts to the probability distribution function of the resource

size being decreasing in the parameter σ. This holds, for example, for the uniform distribution. As

the range of the distribution increases, the probability of each state strictly decreases.

The second condition of Proposition 5 is essentially equivalent to the marginal utility of con-

sumption m(ri, r−i) being increasing in ri, which we already discussed in Section 3. It means that

the expected marginal utility of one unit of consumption is higher than the negative impact of

the consequences of such additional consumption for the environment, something that character-

izes the tragedy of the commons. Condition 3 of Proposition 5 is similar to the condition on the

distribution of the resource size discussed, in the explanation of Proposition 4.

Regarding condition 4, the ratio −φ′′(·)
φ′(·) represents the degree of concavity of the ambiguity func-

tion, measuring the amount of ambiguity aversion in the DM’s preferences, similar to the Arrow-

Pratt measure of risk11. Proposition 5 states that if the players are sufficiently ambiguity averse,

11 The Arrow-Pratt measure of risk aversion for a utility function U(·) is represented by −U ′′(·)/U ′(·).
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then the amount of each player’s consumption declines, as the ambiguity about the probabilities

increases. Once again, to understand this idea better, we go back to our Example 1.

Example 2: Extremely Ambiguity Averse Players

Consider Example 2, but this time with a concave ambiguity function with the CARA form

φ(z) = − exp(−ηz). This is a “constant absolute ambiguity aversion function” because for all z,

−φ′′(z)/φ′(z) = η. This functional form is particularly interesting, because Klibanoff et al. (2005)

show that as η→∞, players risk-ambiguity preferences converge to the maxmin expected utility

problem originally set out by (Gilboa and Schmeidler 1989):

Π(ri, r−i) = min
σ̃

rc
i (σ̃− ri− r−i)

σ̃
=
rc

i ((σ̄− θ)− ri− r−i)
σ̄− θ

. (14)

Clearly this problem is equivalent to the basic CPR game under risk specified in Example 1 where

α= 0 and β = σ̄− θ for which the NE is characterized in Proposition 1. Therefore the NE of this

problem is equal to:

r∗∗AA(σ̄, θ) =
c(σ̄− θ)
nc+1

(15)

As we can see in Figure 4(b), the NE in this case is a decreasing function of θ.

When the players are extremely ambiguity averse, they assume the most pessimistic probability

distribution for the resource size. When θ increases, the lower bound on resource size gets smaller,

which causes players to lower their consumption. Going from ambiguity neutral players to extremely

ambiguity averse players, we observe that their reaction regarding the uncertainty with respect to

probabilities is reversed. So we conclude that players’ attitudes about probabilities is an important

driver of their response toward increased ambiguity.

The results of this section and the previous section seem to agree on one important message: high

’uncertainty aversion’ leads to decreased consumption in the context of the tragedy of the commons.

Note that this runs counter to the experimental results of BRR on the uncertainty effect which

suggest that increased risk leads to increased consumption for real world subjects. Note, however,
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that the BRR experiments were done under the condition of known probabilities. The players are

not so risk averse to give rise to a boundary solution for the NE; therefore, they increase their

consumption with an increase in the riskiness of resource size. It would clearly be interesting to

check the robustness of the BRR experimental result under partial information about probabilities

(i.e. under conditions of ambiguity). Given some behavioral evidence for high ambiguity aversion,

the results of this section predict the possibility of opposite experimental results to those of BRR’s

wherein players would reduce their equilibrium consumption with increased ambiguity.

Recent studies using brain imaging techniques suggest that risk aversion and ambiguity aversion

are not the same behavioral effects. There are significant differences between the sections of the

brain that process the two. Hsu and Camerer (2004) and Hsu et al. (2005) find that ambiguity

aversion is highly related to the emotional regions of the brain, such as those regions that are

involved in processing pain, disgust and other negative discomforts, while risk aversion is more

related to the reward/value related parts of the brain. When the uncertainty is presented in terms

of known probabilities, the subjects focus on the value and then the effects such as the big pool

illusion where the subjects put most of the weight on the higher bound of the distribution comes

into play. On the other hand, one may expect that ambiguous information about resource size

could invokes the players’ pessimism, and therefore they may behave more cautiously.

4. Conclusion

In this paper, we considered the effect of environmental uncertainty on the Common Pool Resource

game. Building on existing models by assuming a general deterioration function for the resource,

we characterized the conditions under which rational individual consumption is monotone in the

other players’ strategies.

We considered the effects of uncertainty on the outcome of a CPR game, and showed that

individual’ attitudes toward uncertainty as well as the nature of environmental deterioration is

pivotal for their response to the increased uncertainty. In contrast to the current paradigm on the

effect of uncertainty on the tragedy of the commons, we showed that greater uncertainty aversion
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may lead to decreased consumption. This effect has not been observed in laboratory results thus

far because experimental designs for gradual environmental deterioration as well as communicating

different levels of information about the states of the environment to the subjects have not yet

been examined.

Experimental economics literature has overlooked the effects of ambiguity associated with prob-

abilities in the context of CPR games, although the importance of distinguishing between risk and

ambiguity is apparent in the behavioral and social psychology literatures. Perhaps this is due to

the complications of designing experiments that communicate gradual deterioration to the sub-

jects and capture the differences between risk and ambiguity. Our paper highlights the theoretical

importance of doing such experiments in order to get a better understanding of the effect of envi-

ronmental uncertainty on the outcomes of social dilemma settings, such as those captured by the

CPR game.
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Appendix. Proofs.

Proof of Proposition 1. Given player i’s payoff Π(ri, r−i), the best response function is equal to:

r∗i (r−i) = argmax
ri≥0

Π(ri, r−i), (16)

where Π(ri, r−i) is defined in (2). The cross partial derivative of Π(ri, r−i) is equal to:

∂2

∂ri∂r−i

Πi(ri, r−i) =
∂

∂r−i

m(ri, r−i). (17)

Therefore, if m(ri, r−i) is increasing in r−i, Π(ri, r−i) is supermodular in (ri, r−i). By the Topkis Theorem

(Topkis (1998, Theorem 2.8.2), implies that x∗(y) = argmaxf(x, y) is increasing in y whenever f is supermod-

ular) the BR function ri(r−i) is increasing in its argument which is equivalent to strategic complementarity.

The case where m(ri, r−i) is decreasing is analogous.

Proof of Proposition 2. We first show that if Assumption 2 holds, then Π(ri, r−i) is strictly concave in

ri, which guarantees the uniqueness of the BR function.

∂2

∂r2i
Πi(ri, r−i) = EX̃{

∂2

∂r2i
u(rih(ri + r−i, X̃))}

= EX̃{u′′(rih(r, X̃))
(
h(r, X̃) + rih1(r, X̃)

)
+ u′(h(r, X̃))

(
2h1(r, X̃) + rih11(r, X̃)

)
}

≤ EX̃{u′′(rih(r, X̃))
(
h(r, X̃) + rih1(r, X̃)

)
+ u′(h(r, X̃))

(
h1(r, X̃) + rih11(r, X̃)

)
}< 0,

because by Assumption 1, h1(r, X̃) ≤ 0 and by Assumption 2(b), ∀x, h1(r, X̃) + rih11(r, X̃) < 0. Next, we

show that Π(ri, r−i) is submodular in (ri, r−i), which will imply that the best response function is decreasing.

It then follows from the continuity of the BR function that it has a unique fixed point, or NE. To establish

submodularity of Πi(ri, r−i), we calculate the cross partial derivative:

∂2

∂ri∂r−i

Πi(ri, r−i) =
∂

∂r−i

m(ri, r−i)< 0, (18)
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by Assumption 2(a).

Proof of Proposition 3. Strict concavity of Π(ri, r−i) which we show in the proof of Proposition 2,

guarantees that the interior NE solves the following first order condition:

∂

∂ri

Π(ri, r−i) =EX̃

{
u′(rih(ri + r−i))

(
h(r, X̃) + rih1(r, X̃)

)}
= 0. (19)

By symmetry of the game, the total consumption by other players r∗−i = (n− 1)r∗i . Hence the interior NE

solves (7). It is straightforward to verify that all other points outside the range [α
n
, β

n
] are strategically

dominated. Hence the NE is bracketed in [α
n
, β

n
].

Proof of Proposition 4. It follows directly from Athey (2002, Theorem 1) that r∗i (σ) is increasing in

σ. If the strategies were complements, one could directly conclude that the NE is increasing in σ. This is

because the direct effect of the increased risk is in the same direction as the indirect effect due to others’

strategies. However, this is not trivial in case where players’ strategies are substitutes. This is because there

are two direct and indirect effects of increased uncertainty on the NE that go in opposite directions. An

increase in the uncertainty will directly shift the player i’s request upward. But this is also happening for

the other players (−i) and because the strategies are substitutes, it will push the player i’s request down.

In general, this makes the comparative statics of the games with strategic substitutes less obvious. However,

Roy and Sabarwal (2006) show that in the case of symmetric games with strategic substitutes, if the NE

exists, it is unique and non-decreasing in σ.

Proof of Remark 1. The best-response function is calculated by solving:

d

dri

{
Eσ̃

{rc
i (σ̃− ri− r−i)

σ̃

∣∣σ̃≥ ri + r−i

}}
=

∫ σ̄+θ

ri+r−i

rc
i (σ− ri− r−i)

σ
.
1
θ

dσ

=
d

dri

{(
(ri + r−i) ln(ri + r−i)− (ri + r−i) ln(σ̄+ θ) + σ̄+ θ− ri− r−i

)ri
c

θ

}
= ((ri + r−i)c+ ri) ln(ri + r−i)− ((ri + r−i)c+ ri) ln(σ̄+ θ) + c(−ri + σ̄+ θ− r−i) = 0

Having a symmetric equilibrium, we put r−i = (n− 1)ri and obtain:

−ri(cn +1) ln(σ̄+ θ) + ri(cn +1) ln(nri) + c(σ̄+ θ−nri) = 0,

which solving for ri gives the desired result.

We have:

d

dθ
r∗∗(σ̄, θ) =

d

dσ̄
r∗∗(σ̄, θ) =

−λ
nW

(
−λ(σ̄+ θ) exp

{
λ− ln(σ̄+ θ)

}) ≥ 0.
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Proof of Proposition 5. The proof uses similar techniques to that of Proposition 4. Player i’s optimal

strategy as a function of the other players consumption, with the presence of risk and ambiguity r∗i (r−i; σ̄, θ)

maximizes:

Π(ri, r−i) = Eσ̃φ (H(ri, r−i; σ̃)) (20)

=
∫ σ̄+θ

σ̄−θ

φ (H(ri, r−i;σ))fσ̃(σ;θ)dσ.

First, note that Condition 1 of Proposition 5 implies that:

∂

∂ri

H(ri, r−i; σ̃)≥ 0.

To be able to use Athey (2002, Theorem 1), we characterize conditions under which φ (H(ri, r−i;σ) is log-

submodular in (ri, σ). To do so, we calculate the cross partial derivative of ln (φ (H(ri, r−i;σ)), where φ(·)> 0,

to obtain:

∂2

∂ri∂σ
ln (φ (H(ri, r−i;σ)) = −φ

′ (H(ri, r−i;σ))
φ (H(ri, r−i;σ))

∂H(ri, r−i; σ̃)
∂ri

∂H(ri, r−i; σ̃)
∂σ̃

×
(
−φ

′′ (H(ri, r−i;σ))
φ′ (H(ri, r−i;σ))

−ψ(ri, r−i; σ̃)
)
≤ 0.

This concludes the proof.



 

  


